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Chapter 1

INTRODUCTION

Materials interact with electromagnetic fields in a variety of ways.

Some electromagnetic interaction phenomena, such as photoelasticity and

piezoelectricity, have found wide application in experimental mechanics

and in industry. But it is only recently that a corresponding theory of

sufficient generality has been developed for electromagnetic interaction

phenomena of elastic solids. This field is generally called electro-

magnetoelasticity.

Special branches of the electromannetoelasticity, such as piezo-

electricity, have been well developed and applied widely in the electronic

industry. Cther branches of the general theory remain unnoticed and

seldomly interest structural mechanicians. However, recent developments

in the high energy industry are gradually changing this situation.

High energy devices such as fusion reactors, superconductive energy

storage devices, MHD generators, and magnetically levitated vehicles are

all subjected to strong electromagnetic fields. The design of these

devices calls for an understanding of the nature of the electromagnetic

forces and the interactions between the fields and the structure. Thus,

although still relatively unnoticed, electromagnetoelasticity is gradual-

ly emerging as a new field-structure interaction theory for structural

mechanicians.

The electromagnetoelastic materials of interest to structural

mechanicians are conductino metals and superconducting materials. Both
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types are used as major structural materials in the high eneray industry

and sometimes they appear in composite form. The electromagnetic

phenomenon in such materials is basically a maqnetic one. The inter-

action theory between the field and the elastic body is therefore called

magnetoelastictity.

Scattered studies of magnetoelastic structural problems exist in the

literature. Knowledqe of this theory is still restricted to a relatively

small group of specialists. In no small measure, this fact is due to the

complexity of the subject, reouirino knowledge of mechanics, electromaanetic

theory, and thermodynamics. Even for relatively simple materials like non-

ferrous conductors, the interactions among these three fields are by no

means trivial.

This chapter gives a brief introduction to the main features of

magnetoelastic structural problems. Section 1.1 describes the multi-

disciplinary nature of the theory of magnetoelasticity for nonferrous

conductors. Section 1.2 introduces the plate as a special structural form

in the general theory and describes the modelling approach of magneto-

elastic plate problems used in this thesis. Section 1.3 presents the

organization and an overview of the later Chapters.

1.1 The Multidisciplinary Nature of Magnetoelasticity

Magnetoelasticity for nonferrous conductors encompasses three differ-

ent fields: elasticity, electrodynamics, and thermodynamics. The cou-

pling of these three fields is shown schematically in Figure 1.1 and

occurs through the field eauations, constitutive eouations, and boundary

conditions. The quantification of the mutual interactions and their

effects on the behavior of the elastic structure Is the purpose of this

W___A
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study.

Details of the theory of magnetoelasticity will be presented in

Chapter Two. However, from the simple figure here, one notes that the

electric current interacts with the magnetic field to create a maqnetic

body force on the conducting structure. The deformation and motion of

the structure then perturb and change the electromagnetic field. The

electric current generates Joule heating which diffuses through the

conductor body and creates thermal stresses. The thermoelastic effects

further change the motion of the conductor structure and affect the

electromagnetic fields. During the whole process, the distributions of

the magnetic body force and the electric heating depend on the variation

of the magnetic field and all other field variables. The resulting body

force distribution can be markedly different from the gravitational body

force more familiar to structural mechanicians and may cause deformation

gradients inside the structure that differ from the conventional kin-

ematic simplifying assumptions of a particular structural form. Further-

more, coupled problems are three-dimensional as the magnetic fields can

permeate through both the structure and the free space surrounding it.

The coupled problem is also a dynamic one since the interactions come

through the motion of the conductor and the time variation of the elec-

tric and thermal fields inside the conductor body. The solution of any

but the simplest structural configurations is difficult, and one generally

has to resort to numerical means.

1.2 Modelling of Magnetoelastic Plate Problems

All the above mentioned features of magnetoelasticity may be found

for the problem of a conducting thin plate in a time-varying magnetic
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field. But here the thinness of the plate may cause the electromagnetic

and mechanical field variables to have certain restricted variations across

the thickness. Simplifying assumptions reoardina these variations may then

be made to model the problem in a form more amenable to analysis. The

study of the interactions between time-varyinq magnetic fields and the

motion and deformation of thin conductor plates is the topic of this report.

The thernoelastic effects are not considered in this work. The modelling

approach is described in the following paraaraphs.

The magnetoelastic problem of a thin nonferrous conductor is basically

an electromagnetic induction problem coupled with a problem of dynamic

elasticity. For structural problems, one considers low frequency theories

in both subsystems. When the frequency of the electromagnetic field is

sufficiently low, the penetration depth of the magnetic field into the

conductor is large compared to the thickness of the plate, and the induced

current (eddy current) is approximately uniform across the thickness and

flows parallel to the mid-surface. One can therefore assume that

(1) the normal to the mid-surface remains unstretched and normal to the

deflected mid-surface of the plate,

(2) the eddy current density is constant across the thickness of the

plate, and, from this assumption,

(3) the normal component of the induced maonetic field is constant

across the thickness of the plate.

The induced eddy current flow is therefore perpendicular to the normal and

rotates with the normal when the plate is vibrating.

With these three basic assumptions, and a few others introduced in

Section 2.3.2, the plate problem is modelled as an eddy current problem

on a moving conducting sheet coupled to a vibration problem of the thin

mi l • . ..63
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elastic plate. The equations governing these two subproblems will all be

referred to the mid-surface of the plate and coupled through velocity and

the calculated magnetic force.

To achieve such a two-dimensional model, the current density is

chosen as the primary variable in the induction problem. A stream function

method is introduced to reduce the vector eouation into a scalar equation.

The Biot-Savart law is used to calculate the normal component of the in-

duced magnetic field, which is basically the stream function for the in-

duced current density. The singular nature of the Biot-Savart law is

avoided at the mid-surface of the plate by transforming the volume integra-

tion into a surface integration. The expression obtained is then substi-

tuted into Faraday's law to obtain the desired governing equation.

The magnetic force calculated will have components normal and

tangential to the plate. The equations of motion of the plate will

contain the effects of both components.

1.3 Thesis Overview

The theoretical side of this thesis is treated in Chapter Two. To

provide a proper background to the discussion of the stream function method,

the theory of magnetoelasticity for nonferrous conductinq materials is

summarized, together with the linearization procedure of the various electro-

magnetic and mechanical field relations. The stream function method is then

discussed in detail. Various assumptions used are examined and the electro-

magnetic field problem reduced to a single integro-differential equation

for the stream function. A literature survey of magnetoelastic plate

problems is also given.
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Chapter Three is devoted to the eddy current calculation on rigid,

stationary conductinq plates since this subproblem is not trivial and

is in itself a significant aspect of electromagnetic field computation.

The governing equations for eddy currents derived in Chapter Two are

applied to finite (two-dimensional) and infinitely long (one-dimensional)

plates subjected to various exciting magnetic fields. The numerical

results are compared to some experimental data obtained by using infra-

red sensing techniques. The finite element method is used to solve the

integro-differential equation for the stream function.

Chapter Four is concerned with the linear vibration of infinitely

long magnetoelastic plates. Small deformation linearizations are

employed, and various types of coupling investigated. Forced vibrations

induced by transient magnetic fields generated by pulsed currents in

nearby coils are studied. A finite element staggered transient analysis

procedure is used for the coupled set of equations. Parameter studies are

presented to explore the effects of the different time characteristics of

the magnetic and mechanical subsystems. Some comparisons of the calcula-

tions with experimental results are given.

a. Chapter Five discusses the nonlinear vibration of infinitely lonq

magnetoelastic plates. The formulation and algorithm for solution are

presented based on the linearized equations for the updated, incremental

analysis procedure. A two-dimensional nonlinear beam element is proposed

for the geometrically nonlinear problems. Some limited results for the

uncoupled, static nonlinear elastic problems are presented, and difficul-

ties in the convergence of solutions for the nonlinear dynamic cases are

discussed. Some suggestions for the improvement of the numerical

technique are also given.
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Conclusions on the results of the present study on magnetoelastic

plates are drawn in the last Chapter, toqether with some suggestions for

further research in this area.

I.



Chapter 2

GENERAL THEORY

Several features of the theory of electromaonetic interactions in

elastic solids make it unique in continuum mechanics. In the first place,

there is no generally aoreed upon interpretation of some of the electric

and magnetic vectors in continuous bodies. These differino interpretations,

together with the fact that the laws of classical mechanics are Galilean-

invariant while the Maxwell eauations are Lorentz-invariant, oive rise to

a variety of formulations of electrodynamics in a movino medium. In the

second place, the separation of total contact force into mechanical and

electromagnetic parts is not unique. The definitions of the stress tensor

and the electromagnetic body force thus become mutually dependent.

Finally, for materials such as piezoelectric solids, the interaction

energy is linear in strain. If the stress-strain relations are to be

obtained to the first order in the strains by differentiation of an energy

function, then that energy function must be correct to the second order

(Ref. 1). Finite-strain theory with all the complications of the associated

two-point tensors must then be used in some problems, even when the defor-

mation is small. Such features, as the three mentioned, make the qeneral

theory much more complicated than a simple superposition of the Maxwell

equations and the theory of linear elasticity.

Toupln (Refs. 2,3) was the first one to use finite-strain theory to

clarify some problems in the theory of interaction of an electrostatic

field with a perfectly elastic dielectric. Tiersten (Refs. 4,5) then

9



developed a similar theory for the deformation of maonetically saturated

insulators. A rigorous treatment of the mannetoelastic interactions has

been glven by Brown in his monoaraph (Pef. 1). The treatment is mainly

for saturated non-dissipative, and non-conductive materials under static

magnetic fields. The model of electrodynamic theory used by Toupin and

Tiersten is also criticized in Brown's work. The interest in all these

studies has been toward an understandino of the phenomena of electro-

striction and maonetostriction as physical problems.

Electrodynamics in a movino media has long been a controversial

subject. Pao (Ref. 6) has given a detailed comparison of four different

theories in the literature: the Minkowski formulation, the Lorentz

formulation, the statistical formulation, and the Chu formulation. Field-

matter interaction theories for stationary and movinn media based on these

different models are also presented. Discussed also are the constitutive

equations and boundary conditions. It is shown that under appropriate

transformations of the different definitions of the electric and maonetic

vectors, the four models can be made equivalent to each other. However,

the expressions for the electromaqnetic body force, body couple, and energy

supply for polarizable magnetizable moving media based on these models

differ from each other. For nonferrous metals, however, the differences

in these expressions vanish and the results are also much simpler.

Field-matter interaction theory is a special branch of continuum

mechanics. The treatment of this subject in the literature basically

follows two different procedures. The stress method uses the stress concept

and the expression for the electromagnetic forces on a material volume.

The enerqy method uses a stored energy function and a variational principle.

Parallels exist between the two procedures, and in theory they should yield
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equivalent models. However, since it is impossible to measure the field

variables inside the material, some assumptions always have to be made

in either method. Several self-consistent theories exist in the litera-

ture. Some classical monographs and articles on this subject include Brown

(Ref. 1), Penfield and Hans (Ref. 7), and Truesdell and Toupin (Ref. 8).

Some more recent ones include Parkus (Refs. q, 10, 11) Hutter and

Van de Ven (Ref. 12), Alblas (Ref. 13), and Eringen (Ref. 14). In each

of these, extensive references to other papers may be found.

Beside the interest in pure theoretical studies, there has been

research work on this subject toward its practical applications in diverse

fields such as geophysics, optics, acoustics, solid-state devices, and so

on. Knopoff (Ref. 15), Wilson (Ref. 16), Kaliski (Ref. 17), and Dunkin

and Eringen (Ref. 18) studied the effects of magnetic fields on elastic

wave propogation. The maanetoelasticity theory they use is a simple

combination of Maxwell equations and the equations of linear elasticity.

The influence of the electromagnetic field on the strain occurs solely by

means of Lorentz forces appearing in the equations of motion. The motion

of the material affects the electromagnetic field only through the velocity

of the particles in Ohm's law. Electromagnetic wave propogation usually

is not considered. The use of quasi-static theory further simplifies the

field problem. Many papers of this type have been reviewed by Paria

(Ref. 19).

On engineering aspects, Montgomery (Ref. 2n) and Brechna (Ref. 21)

discussed stress analysis in maqnet design. Woodson and Melcher (Ref. 22)

treated electromechanical problems in electric machines and other devices.

Melcher's new book (Ref. 23) directs toward electromagnetic field-continuum

interactions. The treatment in this book is general, but the problems
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discussed are mainly fluid flow ones. Many other books on electric

machines and energy conversion also include electromechanical problems.

Quasi-static theory is qenerally used for analysis. The circuit analogy

provides a convenient tool in such a case. Many of the studies are for

the uncoupled cases only, where the knowledge of the maqnetic field

determines the body force and hence the motion and deformation of the

solid. Becker and Pillsbury (Ref. 24) is one of the few cases where the

mutual coupling is taken into account.

Moon's recent article (Ref. 25) provides a broad survey of possible

engineerinq applications of magneto-solid mechanics. Many problems

discussed find applications in high energy technoloay. Desion of fusion

reactors, superconductive enerqy storage devices, MHD generators, etc.,

all involve considerations of strong magnetic forces imposed on the

structural components. Moon and his co-works (Refs. 26, 27) have studied

the stability and vibrations of superconducting maqnet systems extensively.

Miya, et al (Ref. 28) studied conductive cylindrical shells in pulsed

axisynmnetrical maqnetic fields. A new monograph edited by Moon (Ref. 29)

has addressed the mechanics of superconducting structures. Papers pub-

lished in the nuclear enqineerinq literature on the structural considera-

tions of the devices are also numerous. However, apart from the few

studies already cited, they are all limited to the uncoupled cases. The

mutual interaction between the field and the response of the structure

has received little attention.

The purpose of this report is to study the mutual interactions between

the time-varying magnetic field and the induced motion of thin, nonferrous

conducting plates on a rigorous continuum mechanic basis. The dynamics of

the coupled magneto-mechanical system is emphasized. The eddy current
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problem and the deformation-dependent nature of the magnetic force are

given special attention. Both linear and nonlinear deformations of the

conducting plate are considered.

In this chapter the theory of maonetoelastic plates and the formula-

tion approach used in this thesis are presented. Section 2.1 summarizes

the theory of magnetoelasticity for nonferrous conductors based on the

Lorentz force concept. The Eulerian description is used. Section 2.2

discusses the linearization procedure of the field equations. The

description of the coupled system is then referred to a known configura-

tion of the conductor body. The approximation of the procedure is also

discussed. Section 2.3 addresses thin nonferrous conductinn plates. A

stream function method for eddy current calculation is introduced. The

problem is then modelled as an eddy current problem on a moving conducting

sheet coupled to a vibration problem of a thin plate subjected to deforma-

tion-dependent load. The various couplinq effects and the maanetic body

force in the plate are discussed. A state-of-the-art survey of magneto-

elastic plate problems is also aiven.

2.1 Magnetoelasticity fo' Nonferrous Conductino Materials

The material treated in this study is assumed to he homogeneous,

isotropic, and possessing finite conductivity. Polarization and maqnetiza-

tion are not considered. Furthermore, no thermal effects are included.

The theory presented below is basically a theory of the electrodynamics of

a moving media coupled to the theory of nonlinear elasticity. The couplina

effects come from the Lorentz force, the modification of the electromagnetic

field relations by the velocity of the material, and the boundary conditions.

The presentation follows that of Hutter and Pao (Ref.30). Details of some
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derivations are omitted when the reader may be referred to this and other

cited papers.

Consider first the kinematics of a material body in three-dimensional

space. The position of a particle in the reference (material) confiouration

will be denoted by k, while its position in the present (spatial) conflaura-

tion by x. Both Z and z are referred to a common Cartesian coordinate
system fixed in space, as shown in Fiqure 2.1. The component of Z and of

all other vector and tensor nuantities in the reference confiouration are

indicated by Greek subscripts (a, 8 - 1,2,3), and those in the present

configuration by Latin subscripts (I, j 1,2,3). The motion and deforma-

tion of the body are then described by

x = x (X,t) or x = x (X',t), I, a 1,2,3 (2.1)
' . 1\1 a',''O

The particle velocity and acceleration are

= d (Xt = x (,t (2.2a)

= d2  
= X t + v 7 -v ( b)d2= x,t) ~

£ respectively. Introduce the displacement vector u with components

ui = xi - 6i X , or u = &. x1 " X (2.3)

The particle velocity can then be calculated by

V 2 U + V V u (2.4)

The deformation may be measured by either the Green's strain tensor in

the coordinate system X

E C= (u, + u ,t + u , u,) (2.5a)
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x3 , x3

nresent (soatial)
configuration

at time 
t

reference (material)
configuration
at time to

X2, x2

x1 , xi

Figure 2.1 Motion of deformable body in Cartesian

co-ordinate system.
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or the Almansi's strain tensor in the coordinate system xi

e ij = . (ul,j * "Ji - Ukj Ukj)

The balance laws will be applied to ouantities measured in the coordinates

xi for the present confinuration only.

2.1.1 Electromaanetic Field Eouations, Constitutive Relations, and

Boundary Conditions

The electromaqnetic field equations for movino media may be derived

from the followinq postulated global laws (Pef. 6).

Gauss - Faraday is "d - 0 (2.6a)

Faraday dk--d - d (?.6b)

Sauss - Coulomb is k. dZ - tv q dV (2.6c)

dAmpere - Maxwell : Jc te d= fs " dk + fs e " dt (?.6d)

In addition, there is the law of conservation of charae

d
isA e "d + v a dV = 0 (2.6e)

In the above, k is the macnetic induction, P is the electric displacement,

the te and te are the effective electric field and maonetic field, respec-

tively, and 4 is the effective current. q is the free charne density.

All inteqrations are taken over material volume V, material surface S, or

material circuit C, which vary with time. The time differentiations should

be carried out by applyina the transport theorem

~d
t" fv # dV * fv + v • (vt) 1 dV (2.7a)

d f A• d f- s d (2.7b)

F s
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in which + V X X (2.7c)

For nonferrous metals with good (but finite) conductivity, the free

charqe density a can often be dropped. Also, since the freouencies related

to vibrations and mechanical waves are much smaller than the freouencies of

electromagnetic waves with the same wave lenath, one can repard the electro-

magnetic fields as quasistatic when investitatina the dynamic response of

the conductor structures. Mathematically it means that the electric dis-

placement J = 0 and J = 0. The field eauations so derived will be of

the diffusion type rather than the wave type. All the electromaonetic

variables inside the material are then treated as convected auantities.

The electromagnetic field eauations in local form may be obtained by

substitution of Eqs. (2.6) into Eqs. (2.7) and application of the diverqence

and Stokes theorems to the movina volume V and surface S. With the above

simplifications, Eqs. (2.6) become

V • B 0 (2.8a)
V XX (2.8Rb)

V x [e = "- = " -, v x ( , x ,y)(.1)

0 (2.8c)

v X (2.8d)

v e = 0 (2.8e)

The Z , e, e and e in Eqs. (2.6) are fields in the nmvlno body

as measured by an observer followinq each material particle. After the

application of the transport theorem, the k and in Eqs. (2.8) are those

in the moving body measured by an observer in a reference frame fixed in

space. The effective fields H and can also be expressed in terms of

the corresponding fixed-frame ouantities t and , respectively. The

expressions are different in various formulations for general materials.



However, for nonferrous metals the same results may be obtained and are

+ x X e - x E (.9a)

The effective current density measured by an observer moving with the

charged particle is

q , (2.9b)

In the usual case of quasistatic field problems, no free charoe can exist

inside the conductor and one has I= n problems that involve conduc-

tors with slits or cracks, free charge may be accumulated on the two sides

of the narrow openina, and electric arcing may occur when the voltane

across the opening becomes too high. In such problems, the effect of the

free charge cannot be nealected. In the present study, however, free

charge accumulation and electric arcino are not considered, and thus the

relation e = is assumed.

Note also that since = c t, the quasistatic approximation effective-

ly implies that the perittivity c z 0 and hence ' =e t"

The electromagnetic constitutive relations in this study are limited

to the classical linear relations for homogeneous, isotropic materials.

For slowly moving media these relations are invariant with respect to the

transformation of reference frames. Namely,

in the fixed frame, and

c J, k ut , 1 -- Oe (2.lb)

in the movinq frame. In the above V is the magnetic permeability and a

the electric conductivity of the material. In view of Eas. (2.9), one has

= X ( - X ) (2.11a)
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0 ~+ X ~ ?lc

Again, because of the quasi-static approximation, only Fo. (?.llc) and

Eq. (2.11b) with P = 0 will be needed. For nonferrous metals p can he

replaced by vo of the free space without introducina any sinnificant error.

The electromaanetic boundary conditions may be derived by applyina

the alobal laws, Eqs. (2.6), to volumes and surfaces which contain sinqular

surfaces and lines across which the field nuantities may not he continuous

or may suffer a jump. The transport theorem, Fos. (2.7), in such cases

should be modified to account for the discontinuities of the field

quantities. The modified transport theorem is then anplied to nlobal laws

for the small volume or "pillbox" and for the circuit shown in Fio. 2.?.

By taking the limits of vanishino volume for the pillhox and vanishina

enclosed area for the circuit, one may derive the ,umn conditions. For

nonferrous metals with finite conductivity in a ouasi-static field, they

are

*" E u" (2.12a)

+ •• ([ + y ) -o (?.Id)

in which is the unit vector normal to the boundary surface of the body

in the present confiouration, C - denotes the jump of the

ouantity A from the positive side (positive direction of k) to the nenative

side of the boundary surface.

The modified transport theorem and the details of the derivations may

be found in Hutter (Ref. 31). Dunkin and Frinoen (Ref. 18) used a different

approach of derivation. Fouations (?.12c,d) have the followina form in

- t ,,w .
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boundary surface of
the material

S

Figure 2.2 Pillbox and Circuit for the derivation

of the jump conditions.
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Hutter (Pef. 31):

- S J s (2.13a)

• - iv. ) ([3 + Vx ( s) +iv ) V s

(2.1 3b)
- as

in which as and is are the free surface charoe density and free surface

current density, respectively. For aood conductors the free surface

charoe and current densities, althouch achievable in hioh frenuency cases,

can only be an idealization that occurs in conjunction with the assumption

of a perfect conductor (a - - ) (Ref. 32).

Equations (2.P), (2.9), (2.11), and (2.12) complete the description of

the electromaonetic field inside movina nonferrous metals in nuasi-static

cases.

2.1.2 Mechanical Field Fouations, Maonetic Body Force, Constitutive

Relations, and Boundary Conditions

The mechanical field of a nonpolar material is ooverned by the

followino balance laws of continuum mechanics.

Mass d V  dV - 0 (2.14a)

Linear Momentum d tV-O v dV = is t (n ) dS + py p f dV (2.14b)

Annular Momentum: t fV o v dV

inas M t t (n ) dS + mV  x p f dV (2.14c)

d

Eneray d f N v + o () dV

is (n) . dS + i V ( • v +,) dV (?.14d)
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in which p is the mass density, t(n) the stress vector at the surface with

unit vector k, f the body force per unit mass, U the strain enerqy, and *

the energy supply. The integrations are over the material volume V and

material surface S, both movlnq with the material contained in them.

Thermodynamic processes are not considered in this study. The heat

flux and heat eneray supply terms have been dropped in the balance law of

enery. Introducina the Cauchy stress tensor T with

(n) or (n)(?l)t or t n)  n  T  ]:

and applvinq the divergence and transport theorems to Eos. (2.14), one

obtains the mechanical field equations in local form,

d la
o 0 + P V = 0 (2.16a) 

d

t (2.16c)

dP-f U= vv + (2.16d)

in which t is the transpose of the stress tensor and :v v T ij V

is the trace of the tensor product of Ti, and v J1 .

The body force pt and energy supply # arise from the electromagnetic

fields. For nonferrous metals they have the followina expressions:

P t X k (2.17)

AV, -(2.18)

Apnlyina the electromaonetic field equations (2.8) and some vector opera-

tions to Eq. (2.17), one obtains another form for the body force,

p t = V • I or p f = TU.1  (?.17a)

in which is the Maxwell stress tensor for the maanetic system (Ref. 6),
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Substitution of Eq. (2.17) into Eo. (2.18) glves

4 = 4e " 4 (2.18a)

Equations (2.16d) and (2.18) represent a conversion of electromaunetic

energy into mechanical eneray. Substitution of Ea. (2.17a) into Eq. (?.14b)

and application of the diverence theorem yields the balance law of linear

momentum:

dfV dV -is dS + s "dS (2.20)

which states that the flow of electromannetic momentum into the material

body is completely converted into a kinetic momentum which affects the

motion of the body. Detailed discussions of the electromacnetic momentum

flow and force density and of the transfer of these into mechanical momentum

and body force are given in Pao (Ref. 6), Penfeld and Hans (Ref. 7),

Jackson (Ref. 32), and Landau and Lifshitz (Ref. 33). Here, it is only

noted that the force actina on the material body is equal and opnosite to

the "force" (transfer of the electromaonetic momentum) actina on the electro-

maonetic field.

No useful boundary conditions follow from the alobal laws Eas. (2.14a,c).

By applying the same techninue as used in Subsection 2.1.1, one may derive

two more boundary conditions from Fos. (2.20) and (?.14d).

+ 1] = 0 (2.21a)

1 x (2.21h)
T"0 0j

in which the Poyntine vector in Eq. (2.21b)

10 (2.2)

K 0

- ---- ,. •
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represents a density of eneray flow by the electromannetic field across

the boundary surfaces.

The mechanical constitutive equations are assumed to be unaffected by

the presence of the electromaqnetic fields. For isotropic, homooeneous,

linear elastic materials, they are the usual Hooke's Law

iij = A6ij ekk + 2S eij (?.?3)

in which X and G are the elastic constants independent of the spatial

coordinates and ei, is the Almansi's strain tensor, (Fo.(?.5b).

2.1.3 Summary of Equations

For convenience of future reference the pertinent equations in this

section are arouped tooether and listed below.

Electromaqnetic Subsystem

Field Equations

v B (2.24a)

= - (2.24b)

7 x J(2.24c)

toaether with

S• -(2.24d)

Constitutive Equations

+ (v x ?(.?5a,b)

Jump Conditions

• = 0 (2.26a)

+ v x = 0 (2.2b)

(226c)

f ( + 0 (2.26d)

meo,
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Mechanical Subsystem

Field Eauations

dP + p V v 0 (2.27a)

dT v + (2.27b)

dU : ij vj,! (2.27c)

where p f = X V

kt .= e = g-o .v

Constitutive Equations

t = x ekk ejj (2.28a)
ij kk+ ii

TB -L-Bo Bi Bkk (2.28b)
0j-U ii- 0 i

where efj (u 1 , + uj i - Uki uk, j )

Jump Conditions

S + = 0 (2.29a):1 ( " ) 1
•V + QT o - x o(2.29b)

0 0

2.2 Linearization Procedures

The field relations and boundary conditions presented in the last sub-

section are formulated in Eulerian coordinates and refer to the as yet un-

known deformed confiouration. To render the eouations amenable to analysis,

one needs a known, iven reference configuration about which one linearizes

all the field relations and boundary conditions. For small deformation

cases, the undeformed initial configuration of the conductor is a natural

choice. For geometrically nonlinear problems, one can choose for reference

the last known configuration of the conductor durinq the solution process.

'S

- - - - - -- - - - - - - - - - - - - - - - - - - -
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Such a procedure is standard for nonlinear mechanical problems and is called

the "updated Laorangian formulation" in the literature (Ref. 34).

The initial undeformed configuration or any known intermediate con-

figuration durina the solution process can also be used for reference for

the mechanical subsystem. To have a consistent linearization for the

coupled problem, however, the same procedure should he applied to the

electromagnetic subsystem. Since a purely Lagrangian description is not

available for the Maxwell equations, the updated Lacranaian formulation

is a more natural choice.

Hutter and Pao (Ref. 30) have developed a linearization procedure for

moving magnetizable elastic solids. Alblas (Ref. 13), Van de Ven (Ref. 35),

and some Russian authors (Ref. 36) also suggested similar procedures. In

all these studies, it is assumed that the deformation is small even with

very large electromagnetic fields, and that the deformation has only a

minor influence on the fields. The dominant effect on the field is the

presence of the undeformed body. The linearization of the Maxwell equations

is then carried out as a perturbation on the undeformed body. All the

authors considered polarizable maqnetizable materials. The constitutive

equations and other field relations must therefore also be linearized.

For the aeometrically nonlinear problems in this thesis, the deforma-

tion is allowed to be finite, but the displacement increment within each

incremental solution is assumed to be small enough to allow the field

equations to be linearized in a similar way. The approximations made in

the linearization procedure will be discussed.

For the purpose of linearization, three configurations of the body are

distinguished as shown in Figure 2.3,

._ .. ,- " . .. . . . .
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CcmfiOUr~tion conficiuration
t t+' t

initial
configuration
t =0

X9  2' X2

1* X1, &I, X1

Figure 2.3 Initial, reference, and present configurations

of a deformable body in electromagnetic field.



(a) the initial undeformed confiouration with coordinates X,

(b) the intermediate reference conftouration with coordinates

(c) the present confiauration with coordinates k.

All X, k, and x are measured in the same Cartesian coordinate system. The

intermediate state can either be the initial undeformed state in the small

deformation cases, or the last known movina, deformed state in the non-

linear cases. All the field vectors and tensors in this state are assumed

to be known and are denoted by a left subscript t.

The displacement of a particle from its intermediate conficuration

to its present confiouration Is denoted by

U1 =xI = ai ci E a x1 - u (2.30)

is assumed to be small such that luial <<l and "6tl << Vo, where

is some characteristic wave speed, e.g., v.

The derivatives in the present confiouration referred to the inter-

mediate confiouration then become

x =  ax1  (0ia - a (2.31)
axi 3& xI i xI 'c a

In view of the small disnlacement assumptions, Eo. (2.31) may be replaced

by

x' " ( 2 .3 2 )

However, if coupling terms that are linear in the deformation aradient

are important, Eq. (2.32) must be replaced by the more accurate relation

(233
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2.2.1 Electromagnetic Field Eouations and Boundary Conditions

The electromagnetic field variables are decomposed into two parts.

The first part corresponds to the intermediate state and satisfies Eos.

(2.24) - (2.26). The second part represents the perturbation which accounts

for the changes of the externally applied field and the effect of deforma-

tion. These perturbations are denoted by lower case letters and are assumed

to be small so that all the equations may be linearized with respect to them.

With k= tk + k, = t + and ti + 4, one obtains, using Eqs.

(2.33) and (2.24),

b -,et uas (tB + b) =0 (2.34a)

C (tE + e ) , -c u, (E + e) + a-b = 0 (2.34b)
ayt YY P s 6s t YY 5T a

Casy by, 0 " capy u ,' (tBY + bY),o - o J = 0 (2.34c)

ia cg - uaB (tJ a + j ) , ( = 0 (2.34d)

For the small deformation cases, one obtains, usinq Eq. (2.32)

instead of (2.33),

b =0 (2.35a)

E e) + b =0 (2.35b)
ayt Y Y +~ T ca

Ca~y b y, " Uo ja = 0 (2.35c)

a=0 (2.35d)

which are the same as Eqs. (2.24).

For the small deformation cases, it is assumed that the boundary

conditions may be satisfied on the surface

S ({a t) =0 (2.36)
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with unit normal 
vector 

3

N V (2.37)a -Ss S, 0

in the intermediate state. The boundary conditions are then

• z o (2.38a)

t+ + k X~ J (2.38b)

= 0 (2.38c)

• (= (2.38d)

When the second order theory must be used, for example, in elastic stability

problems, must be replaced by the unit vector k normal to the deformed

surface S (xi , t). ni is connected to Na by the following relation

ni = N (S + N NY eB S ia - ui ) (2.39)

This derivation is aiven by Parkus (Ref. 11) and Hutter and Pao (Ref. 30).

The reduction of Es. (2.34) to (2.35) in small deformation cases is

obvious since ua,, A 0 in such cases. The nonlinear terms in the perturbed

quantities in Ens. (2.34) should he dropped to have a linearized set of

equations. The linearized eouations also allow for the inclusion of trans-

port current. In such cases . tJ' and tk are cenerated by some external

electromotive sources connected to the conductor body (Ref. 37).

2.2.2 Mechanical Field Equations, Maqnetic Body Force, and Boundary

Conditions

The mechanical field equations (2.27) may be linearized by the same

procedure as used for the electromagnetic equations. For the small de-

formation case, one has, using Eo. (2.32),
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~d d -Ta -
=  (?.40)

e., (uC%,P + u ,) (2.41)

The eauations of motion in this case become the usual Navier's eauation,
a2

p u = S u + (A + S) + P f (2.42)

which is the basis of the macnetoelasticity theory used by Paria (Ref. 14)

and Knopoff (Ref. 15). The boundary conditions in this case refer to the

surface S and unit normal vector in the oriainal configuration.

For qeometrically nonlinear nroblems, the principle of virtual work

orovides a more convenient formulation method. In the updated Laorannian

formulation, the principle of virtual work gives

ft 6 ts A E tdV = t+At (2.43)

where t+AtR is the external virtual work expression,

t+AtR t+At t+A t t+At t+At t+At=ft+AtA  t ui+ t+At P ui) lui (2.44)

In Eo. (2.43), t+AtS are the Cartesian components of the 2nd Piola-

Kirchhoff stress tensor corresponding to the configuration xi at time

t+at but measured Jr the confiauration E which occurs at time t,

t4A t5  t t1
So t- tEtj ij j(2.45)" t F ,i ii ,

P

and at+At as are the virtual variations in the Cartesian components of the

Green-Lagrange strain tensor in the configuration xi (at time t+At)

referred to the configuration E (at time t),

6ut+ At  +U$,+ u Y (2.46)

I a
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The integral of Piola-Kirchhoff stresses time, variations in the Green-

Lagranae strains is defined over the confiquration ra (at time t) of the

body.

In Eo. (2.44) ui is a virtual variation in the current displacement

increment components ui. When measured in the configuration &a.
m6

du 6u1 6 (2.47)

ui is the acceleration in the conflauration x tt , f, and t+At

are the surface traction, the body force per unit mass, and the specific

mass in the confiouration xi at time t+At. The integrations are defined

over the unknown confiouration xi of the body.

When referred to the configuration E of the body at time t, the

applied forces are evaluated usino (Ref. 38)

t+Att tdAu t+Atti t+AtdA (2.48a)

t+At

(t+Atf. ) tdV = ( (t+at f "" t+At dV(24bS f utdt t - 6i (2.48b)
0

The surface traction t4At and body force t+Atf are generated by the

electromagnetic fields and depend on the deformation of the conductor.

To linearize Eq. (2.43), the Piola-Kirchhoff stress tensor is first

decomposed into two parts,

t+At s , tT + S as (2.49)

where tT ( are the Cartesian components of the Cauchy stress tensor that

satisfy Eq. (2.27) - (2.29) at time t, and S a are the Cartesian components

of the 2nd Piola-Kirchhoff stress increment tensor referred to the confiq-

uration & at time t. The strain increment t+Ata is separated into

linear and nonlinear parts

muI



t+At (?.Sa)

as *eft +~ (2.am

where

eas - (u,' +u) (2.51)

na- u', uYOR (2.52)

The constitutive relation between stress and strain increments used now Is

Sets- Co a y E (2.53)

Eq. (2.43) can then be rewritten as

Itv C ny cy c -Y a tdV + f T n a tdV a t+At R -e a tdV/tV t6 ciF- tv to

(2.54)

which is a nonlinear eQuation in the incremental disnlacements u

Linearization of Eq. (2.54) may be obtained by assumino that -

e as, 6cas - Se and that Sas 2 Casys ey. The equation then becomes

ftv Cl e.Y Sea, tdV + t tdV . t+AtR -e a tdV

(2.55)

The electromagnetic body force may be calculated from the linearized

Maxwell equations (2.34) or (2.35). Whichever set of equations is used,

one has

f a ( t)O + (i X ) + ( X t )a + (Q x k) (2.56)

The last term in Eq. (2.56) is of the second order in the perturbed

quantities and should be dropped to have a consistent linearization.

However, in some problems this last term is not small. This point will

be discussed in the next section.
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The mechanical boundary condition, when referred to the boundary

surface S and the unit normal vector in the confiquration at is

NS t+Atsa + T as (2.57)

When second order theory needs to be used, t should be replaced by Q in

Eq. (2.39).

The elasticity material tensor CaPY6 and the specific mass p are

deformation dependent in the theory of finite elasticity. However, for

small strain and finite deformation problems for conductina metals, the

deformation effects will be very small, i.e., a,i ' i in these cases.

In this study, the constitutive tensor is taken the same as in the un-

deformed orioinal confinuration of the material.

2.2.3 Summary of Equations

The linearized equations of the theory of magnetoelasticity are

summarized below.

Electromagnetic Subsystem

Field Equations

(i) small deformation cases

b - 0 (2.58a)

C (tE Y+ e), + -b a 0 (2.58b)

b ,t - VO -o0 (2.58c)

Ja9a "0 (2.58d)

(ii) larqe deformation cases

b a, -u a 0 (2.59a)axB ,
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St + eQu - FY + ~Th~ 0 (2.5qb)

a - bY, rapy u-6,s t, " -,6 = 0 (2.50c)

j,' - ua' tJis" N0 (2.59d)

Constitutive Eouations

tJa + I = a [t B + ea + E u tJY (2.60)

Boundary Conditions

• r = 0 (2.61a)

x k+ + k t 0 (?.61b)

Z o "0 (2.61c)

z I 1- 0 (2.61d)

where is the unit vector normal to the boundary surface

S (i t) - 0,
C!,

N - S. / i$  - (2.62)

Tn the second order theory, is replaced by g aiven by

n1 * Na (6in + N N e 6i- U ) (2.63)

Mechanical Subsystem

EQuations of Motion

(1) small deformation cases

2 ua x Gu a + ( x + S) u ,a + ofa (2.64)

of " (ti x t)a + (tY x ) + (, t t )a (2.65a)

0i) larqe deformation cases (U.L. formulation)



It v C CIS6 e-Y Se eis t dV + I p6 npt dV t+Atp P.-ft e p t dVtA tAt t t+At t

t+At A  t 0 u( tdA + ft V  f - u ) 6 u tdV (2.66ab)

where

e * (uas + u ,a )

a= UYa Uy,

t t+At fa tk)a + x 10 + ( x (2.65b)

Constitutive Equations

S a = CaY 6 e 6 (2.67)

where

S aS = t+Atsap tT 6

C a py s " A 6 C y S + 2 6 6a y 6 R

Boundary Conditions

Np • t+AtSap + Tapl (2.68)

N is replaced by nj, Eq. (2.63), in the second order theory.

2.3 Maqnetoelastic Plates

sThe linearized equations of maonetoelasticity presented in the previous

section are specialized for thin plate problems in this section. In

addition, some simplifynn assumptions are introduced.

2.3.1 Literature Survey

There are two types of studies of maonetoelastic plates in the

literature. The first one deals with the interaction of maqnetic fields



with soft ferromannetic plates. The maqnetic force and body couple are

aenerated from the macnetization of the material in this case. Eddy

currents are usually not consic ored. The second one deals with conduct-

ino materials. In this case the eddy currents can be aenerated from both

the time variation of the maanetic field and the motion of the plates.

Most studies of this type consider the effect of motion only. A few

studies consider transient maonetic fields but assume that the electric

and magnetic fields are uncoupled and that the eddy current can have no

reaction to the applied field. For the analytic treatment of the subject

in both types, almost all authors consider stronq and uniform static

external maqnetic fields.

Panovko and Gubanova (Ref. 30) first discussed the bucklino of a

cantilever ferromacnetic plate in a uniform static transverse maqnetic

field using a neqative foundation type of magnetic force distribution.

Moon and Pao (Ref. 40) recognized that in a uniform maanetic field there

can be no net force on a mannetized body. A model based on a distribution

of mannetic couple alonq the length of the plate was built, with the jump

conditions of the maonetic field calculated on the surfaces of the deform-

ed plate. The calculated critical maanetic fields acree well nualitative-

ly with the experimental data, but the experimental data are lower than

the theoretical values by a factor of about 1.8. Since then, a number of

theoretical and experimental studies have been conducted tryinn to resolve

this discrepancy, includina the development of a self-consistent theory

of linear ferroelastic continua by Pao and Yeh (Ref. 41). A detailed

review of many of these papers may be found in Moon (Ref. 25).

More aeneral boundary value problems have been stuaied by Van de Ven

(Ref. 35) and Parkus (Ref. 11). In Parkus (Ref. 11), rectanqular and

-!



circular plates of an elastic, soft ferromanetic material in a uniform,

static transverse maanetic field are discussed. The linearized maqneto-

elastic theory based on Hutter and Pao's procedure (Ref. 3n) is used for

analysis. The equation of motion of the plate is derived hy assuminq

uniform tanqential induced electric fields and uniform normal induced

maqnetic fields across the thickness of the plates. The classic Kirchhoff

assumption is used for the kinematics of the plate. Fddy current is not

considered, and the effect of the in-plane deformation on the flexural

deformation is also nealected. The influence of the maonetic field on the

deformation of the plate is modelled as a surface effect. The critical

maanetic field that causes the bucklinq of a clamped circular Plate has

been calculated. The resultina expression contains the 3/2 power of the

thickness to radius ratio for an axisvmmetric bucklina mode, the same as

in the Moon and Pao model for a periodically pinned beam-late in sinusoi-

dal deformation. No comparison to experimental data of this result is

reported in this work. However, it shows unusual completeness of deriva-

tion, startinq from the dipole-Amperian current model of electrodynamics

in a movina body, throuah the linearization of the various field equations

and boundary conditions, to the modellina of the specific boundary value

problem of magnetoelastic plates.

Kaliski (Ref. 42) and Dunkin and Erinoen (Ref.18) studied the

vibrations and wave propaations in ferromaanetic plates under the action

of uniform, static magnetic fields. The theories included conducting

currents, but did not predict any instability phenomena. Moon and Pao

(Ref. 43) in another paper showed that the frequency of vibration of the

beam plate decreases as the mannetic field increases. The vibration and

stability problems are then connected to each other, and the ciitical



magnetic field can be determined from the relation between the frequency

and the field. In two-dimensional ferromaanetic plates, Moon (Ref. 44)

and Srinivasan (Ref. 45) found that the magnetic field can either decrease

or increase the natural frequencies, dependinq on its direction. To

achieve buckling and a decrease in frequency, the field has to ,e nearly

parallel to the plate normal. In Moon (Ref. 44), the bucklinq theory of

beam-plates has also been extended to two-dimensional ferroelastic plates

in oblique mannetic fields.

For nonferrous conductina materials, Dunkin and Frinqen (Ref. 18)

discussed the vibration of an infinite beam-plate in a static, tangential

maqnetic field and showed that the eddy current acts as a dampina force.

Their treatment of the interaction terms, however, is not complete.

Ambartsumyan, et al. (Ref. 36) have published a monograph (in Russian) on

magnetoelasticity of thin shells and plates under the action of static

magnetic field. In a recent paper, Ambartsumyan (Ref. 46) discussed the

oscillations of thin conductinq plates in static, uniform transverse

magnetic field. The linearized magnetoelastic equations (Ref. 36) were

used for analysis. The induced tangential electric field and the induced

normal magnetic field are assumed uniform across the thickness of the

plate. An improved bending theoryof plates (Ref. 47) is used, and the

shear deformations of the plate considered. The electromaonetic boundary

conditions are imposed on the surfaces of the undeformed plate. The

calculated electromagnetic body force is in-plane and includes the effects

of both the rotAtion of the plate normal and the shear deformations. The

equations of motion are then integrated and averaged over the plate's

thickness. The equations derived are applied to infinitely lono plates,

simply supoorted on the edges. The comparison of the results to the

• ' .. .. . .. - . . .. . --. ' ' r .,)
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predictions based on the assumption of undeformable normals shows very

different behavior. The latter indicates the classical phenomena of

decreasing frequency and bucklina with increasina field in all modes.

The former indicates dampina without oscillations in the first mode for

all values of the transverse shear effect. For the higher modes, the

deformable normal theory shows decreasinq frenuencies and increasinn damp-

ino for small thickness-to-lenoth ratios at the beoinnina, and increasina

freouencies at laraer thickness-to-lenoth ratios. No experimental data

are reported to verify these results. However, it clearly indicates the

importance of maonetic shear forces in such problems.

In an unpublished report, Moon (Ref. 37) presented some preliminary

studies of the vibrations of conductinn plates carryin stronq transport

currents. Edelen's nonlocal variational calculus (Ref. 48) was applied

to the Lagrangian function of the coupled electromechanical system.

Electrical heating was not considered. The results indicate stiffeninq

of the system; however, further studies are needed for confirmation.

Moon (Ref. 25) has conducted experiments on circular aluminum plates

levitated above a neighborinn coil with sinusoidal currents. Circulatina

currents of up to 103A were induced in the plate tooether with the

associated Joule heatinq. To minimize the thermal effects, resonance and

free vibration technioues were used within 10 seconds after the current

was turned on. The chanoes in frequency souared were found to he linearly

related to the souares of the excitino coil currents. The frequencies of

the diameter modes were found decreased and that of the symmetrical mode

increased. However, thermoelastic effects cannot be separated from the

observed channes in frenuency. Further studies have been abandoned be-

cause of the inevitable complications of Joule heatin. Clearly, all the
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maanetoelastic studies of conductinq bodies have to be subjected to the

same limitation (Ref. 25).

2.3.2 Stream Function Method for Eddy Current Problem on a Movina Plate

In the last subsection some research on the vibrations of thin

conducting plates under the action of a uniform, static field have been

reviewed. The discussions there serve to reveal some aspects of the

physical nature of the problem. In this subsection, forced vibrations

of plates induced by time-dependent, nonuniform mannetic fields will he

considered. Eddy currents can be cenerated by both the motion of the

plate and the time variation of the macnetic field. Practical non-

uniform fields such as those aenerated by current-carryinc coils are of

special interest. The tanaential component of such a field will exert

a normal force on the plate and cause a forced vibration. The induced

vibration and the mutual interactions between the fields and the motion

are the object of the study.

The linearized electromaonetic field relations, Eas. (2.5P), (2.60),

and (2.61) will be used for analysis. They are referred to the confioura-

tion and boundary surfaces of the undeformed plate in the small deformation

cases, and to the confiouration and boundary surfaces of the last known

position of the plate in larae deformation cases. The unit normal vector

to the boundary surface is defined by Fo. (2.62). In makino such a choice,

one loses the couplino terms in Eos. (2.59). An iterative procedure will

be sunqested for the simultaneous satisfaction of both the electromaanetic

and mechanical field eauations. This procedure is basically an extension

of the iteration scheme for the out-of-balance forces widely used in

geometrically nonlinear elastic analysis.
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Eqs. (2.64) and (2.66) will be applied to the mechanical subsystem

in the small deformation and in the incremental large deformation analysis,

respectively. The classical Kirchhoff assumption of the undeformable

normal to the midsurface is adapted. Transverse and in-plane shear defor-

mations are not considered.

The following two basic assumptions are made in this study:

(1) the induced current density , is constant across the thickness of

the plate and is parallel to the midsurface of the plate;

(2) the normal component of the induced maonetic field BI is constantn

across the thickness of the plate.

These assumptions differ slightly from what other investigators have used

in that one neglects the normal component of the current inside the plate.

The first assumption is a qood approximation when the penetration

depth of the magnetic field is large compared to the thickness of the

plate, since the boundary condition Eq. (2.61d) will force the current

to flow parallel to the surface. The second assumption is a valid one

for such a current distribution, since the induced current is related to

the normal component of the induced magnetic field through Eq. (2.58c).

The penetration depth (skin depth) 6 is large when the freouency of the

magnetic field is low. It is expressed by the following formula (Ref. 49)

62 = 2 (2.60)

in which w is the frequency of the magnetic field and a the conductivity

of the material.

Except for these two assumptions, the applied external magnetic

field is assumed unaffected by the generation of the induced eddy current.

That is, the power supply cf the external driving coil is assumed to be

__ , ..... .. .-,, = .: : , -. _ .... . " . . . .,:-2 '-  -
" - r - ... . .... -- ' ..., . .. .. . ...
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current controlled instead of voltaae controlled. The oeneration of the

eddy currents in the external coil thus does not need to be considered.

With the above assumption, the spatial and time variations of the

applied field can be calculated directly from the drivina current and

qeometry of the external coil. Only the induced parts of the electro-

maqnetic field variables need to be determined.

To solve for the induced field variables, if Eqs. (?.58) in their

present form are used, the electromagnetic field eouations in renions

outside the plate need to be considered. Boundary conditions for the

induced field at infinity also have to be imposed. To avoid solving such

a three-dimensional problem, the current density is chosen as the primary

variable in this study. The electromaanetic field problem will be re-

formulated by usina a generalization of the stream function method

sugaested by Moon (Ref. 25). Since Eqs. (2.58) and (2.60) are the same

as Eas. (2.24) and (2.25), respectively, in the followina derivation the

notation employed is that of the total , k, and in the present con-

figuration, but referred to the reference confiauration.

Since the current density i is uniform across the thickness, one

defines

t hj (2.70)

where h is the thickness of the plate. From the continuity condition

Eq. (2.24d):

v• h v • 0 (2.71)

a stream function i is introduced for the current

~ (2.72)

where is given by Fq. (2.62). Comparing Eq. (2.71) to (2.24c), one

S- - - - - -
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finds that 4 is basically the normal component of the induced maqnetic

field BN,

h B1 (2.73)
N N

The total maqnetic field is separated into the applied external part

0
and the induced part ,

0 _ + I (2.74)

The induced part is related to the eddy current distribution, under the

quasi-static assumption, throuqh the Biot-Savart law

B I  
-) Q dV' (2.75)

Eq. (2.24a) Is automatically satisfied here where k is at the mid-surface

of the plate.

The stream function may now be determined by substitution of Eqs.

(2.72), (2.74) and (2.75) into the Faraday's law, Eo. (2.24b),

IVXV X (4,j) 2C~h (Z +QI) +Ch X ( X o) (2.76)

Only the normal component of the vector equation will be used because the

in-plane current is of primary interest. Note also that the last term in

Eq. (2.76) has been linearized by droppinq the self-induced field. The

variation of x across the thickness contains all the shear deformation

effects. However, since the flexural motion of the plate is of primary

interest in this research, this term will refer to Z on

of the plate only. In small deformation cases, it is the orioinal mid-plane

of the plate. In the large deformation cases, it is the curved mid-surface

in the reference configuration of the deformed plate.
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To have a oeneral descrintion, let an orthononal curvilinear coordinate

system j. be introduced on the mid-surface, Fla. 2.4, with unit base vectors

(a=1,2,3). , is 'he same unit normal vector Z defined bY Fa. (2.62).

One has, on the mid-surface,

FI 1 =1 (r' 2), '? : r 2 (' r 2 ), 3 : 3 (' 1 ) (2.77)

The infinitesimal line element on the mid-surface is gliven by

dS2  a O dCa dC (2.7P)

where

a ._ _I -- I . (2 .79a )

a ?s - (2.79b)
a12 ac 'C 2

The unit tanoent vector ( (a=1,2) is niven by

1I l &2 3

The current density on the surface can be written in the form

-- I1 (El E2 £ + 12 (el E? £2 (2.81)

Then,

S (a 11) + (a, 1 12) 1 (2.82)a " , a a22 1 1l2 2 2

and

I CL (2.83)
1 a22  C2 ' 2 all l

The normal component of the left hand side of Eq. (2.76) becomes

k3 ' [V x q ) aa 22 (~ 2) +. a(11i(2.84
3 1 a2 2  , a11  cl + 2 a2 2 ) (2.84)

3 1
Let k k "', R .- Note that /R V (V),

where V1 is the gradient and operates on the ' variables. One has, by

XI i -
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IU2 3

Figure 2.4 Orthogonal curvilinear coordinate system

on the mid-surface of the deformed plate;

& is the Cartesian coordinate of the reference

configuration of the deformed plate.
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substitutln Fo. (2.7?) into (?.75),

S(t) - v ( i p x V1 ( , )dV' (2.R5)

V1V- [v " v dV' f.[ Vl (f)] V dV'

The normal component of which is

-riT'v' [r vI (1)] (vI o N) dV' (2.86)

Note that because

1 71

one has

N r

fI f(VoN e' +- , % ( N )l v, dV' (?.SP)

Let

= (v1 p • N) + 71  • (.0o)

By using the followina relations,

f V V dV = fS dS (2.0Oa)

I /V' f Q9' v 2  1 dV' =-4w f()(2O)

).'

- -1 d-- -- - ,-(- --(2.Q. -l



(.~)= . .~ 0 - * v1 (?.QOC)

one has

+ Io 4 , lV• dS'N TIT , +~ 1s ~3 k

- ;s' f ((1 H N) + (e " N)1 s.

+ 1 v I  r (?.A1)
+ Vo~ V1 I 0 WV

under the assumotion of undeformahle normals, v, ( N N) = .

The second surface inteoral becomes

1%" w iS' vI V1 •N dS'

The volume intearal contains the I/R sinnularitv and divernes at the mid-

surface as R approaches 0. However, for flate plates, • N = ' and

* $ • 0 for all k'. Ea. (?.0l) becomes

B1 0~ - + (g 1  () g, dS' P-07?)

which is free from the sinaular nature of the Riot-Savart law at the mid-

plane of the plate.

It is observed that the v1 • Q term in Eq. (2.0l) is related

to the curvatures and their derivatives of the deformed Plate and is

therefore of the second order in maanitude. Furthermore, the tvne of

sinaularity associated with it has been reduced by the order of one.

One must assume finite deflections but small rotations in nonlinear prob-

lems to neqlect the last term. Eq. (2.01) then takes the followina form



0 0110N ( ) -- 4, (:) * s  (g. • ) 4, V1  ( ) • , dS'

UP 0 1S (2.93)s s' I *i 4 " N. ds'( .

The time rate of channe of which is

-- 'o lt ( *) g dS'
"o 10

"T 4 ) l (wdS'

1 0 w- 47 ISs' T (vl j,) v dS'

+ 0 Ss' N) 3, Iv . dS'

+ ° 1) 0I d)"';' d '(

The first three terms obviously correspond to the riaid body state. The

other terms represent the perturbation caused by the relative rotation,

transverse deflection, and stretchina of the plate elements. The riaid

body terms are expected to have the dominant effect. The couplinq terms

will be discussed in the next subsection.

For riqid flat plates, Fi. 2.5a, one has (Ref.25)

~ ~ !o - * (x', ')
a 8I = 00 * - at d'(.5

3T N t 7  " 2 + (y.y)Z + h 2  dS (2.95)

In the derivation of the above equation, the boundary condition on the

narrow edges of the plate is 4 o. For a rigid plate infinitely lona

in the y-direction and of finite width i in the x-direction, Fig. 2.5b,

with fields independent of the y-coordinate, one can intearate the second
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(a)

(b)

Figure 2.5 (a) Finite (two-dimensional) conductina plate;

(b) Infinitely-long (one-dimensional) conductino plate.



term in Eq. (2.Q5) with respect to Y' and obtain

Vo  V o  I' , *(x.)
3 81 0' 11 K t - I dx' (2.96)
-',t N F_ 5T 77 -2 ?

-- (x-x') 2 + h -dx2.6

Eqs. (2.95) and (2.06) will he used in Chapter Three for eddy current

calculations on riaid plates.

The normal component of the last term in Fo. (2.76) is

Ia2? [-( - AI)I. (.7ch x x cv(, o h 1l [2- (a2 A?) -2- (all l (.7

where

A1  u? R3 - 3 820 A2 = U 3 P10 - 1 B30 (2.9P)

in the r, - coordinate system.

The three-dimensional transient field problem thus reduces to a two-

dimensional one on the mid-surface of the plate. To the above equations,

one needs to add the boundary conditions for u, described in the followina.

Assume a simply connected plate. At the boundary curve C, Fia. 2.5a,

the current density I should be tanaent:

"n 0 (2.0)

or

(V ^ N9 • n = V 4' - t = (2.100)

By intearatina the above eauation alona the boundary, one can replace

Eq. (2.99) by

S0= on C (2.101)

2.3.3 Couplina Effects

The kinematic nature of the Riot-Savart law has been recoanized in

the last subsection. Eq. (2.94) has been derived based on the assumption



of nondeformable normal and small rotation of the plate element. The

diverqence property of the Riot-Savart law on the mid-surface has been

avoided by transforminn the volume inteoral into a surface intearal. The

normal component of the self-field on the mid-surface of the plate has

therefore been modelled as caused by a distribution of sfnoularities on

the top and the bottom surfaces of the plate.

The couplina terms in Fo. (?.q4), however, are too complicated. The

effects of the motion on the field come throuqh the relative rotational

and translational velocities of the whole plate in a olobal way. However,

these terms correspond to the interaction between the motion of the plate

and the self maqnetic field and are of the second order in the theory of

the coupled problem. One therefore drops these couplino terms and considers

only the local coupllna effect, i.e., the last term in Eq. (2.76), which

has already been linearized. The couplina terms in Eq. (2.q4) miqht be

important for transport current problems, however (Ref. 37).

With the above linearization, the eddy current problem is formulated

as follows. For finite deformation incremental analysis, one has

1a 22

al1 a2 2  ('I all I , a22 2

0 U, + f -VdS

top bottom

+ h 0)22 [a11 (j y

Ch 1B0 (2.102)

. ... , i - " " ,,i X i... l...:,: &:* .. -
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In the small deformation cases, it reduces to

21 o(7h r '1- (x V'
( + ) f' t V. 0 dx' dv

IX y (x-x') 2 + (yy + h 3/?

+ oh L o s z) - ' (' Oo - o)h x z y z- y

h B0  (2.103)
IT z

where u, v, and w are the in-plane x-direction velocity, the in-plane

y-direction velocity, and the transverse velocity, respectively. In the

small deformation of infinitely lona plates, it is

C1- 'I) T + 0 it ' dx1 + c'h Ro (RB0 -

ax (x-x') 2 + h
0T

h- B (2.104)
t z

The effect of in-plane defotration has been included in Fos. (2.10?) to

(2.104). The correspondino equations of motion are provided by Fqs.

(2.66) to (2.67) for the finite deformation incremental analysis. For

small deformation cases, they can be obtained by apnlvina the nondeformable

normil assumption to En. (2.64). In the present study, they are taken to

be the classical eauations for plates subjected to both in-plane and out-

of-plane loads, and are

_2 -_ d
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Eh "I-?u MH ,)2 v ?u) + 1 R 0 ph u  (?.105a)

i-v Ix zY

Eh ),2 v Hv )2u + 1 - ?0ph?

x x Iy y y z ?

B0  I B - ph ?w  (2.1O5c)
x y y x

For small deformations of infinitely lono plates, Fos. (?.1l0) reduce to

Eh 2 2

P4w + I Bo  w + 2ph w = Bo  (2.106b)
x 4 yy x



where

Ix  , y - x (2.107)

2.3.4. Maqnetic Body Forces in Plates

Equations (2.102) to (2.107) will be the basis for the later chanters.

Their derivations have been based on several assumptions. Except for the

undeformable normal of the plate and the constant eddy current density and

constant normal component of the induced maanetic field across the thick-

ness of the plate, every variable has been referred to the mid-surface of

the plate. Specifically, the magnetic force density has been treated as

constant across the thickness and equals in maqnitude to its value at the

mid-surface. In these calculations, the equation has also been linearized

by dropping the effect of the induced maqnetic field. In this subsection,

the implications of these assumptions will be considered.

The assumptions of constant current and constant normal comnonent of

the induced maonetic field across the thickness averaqe the induced current

distribution. In the calculation of the normal force, the tanoential

component of the applied field is evaluated at the mid-surface, and the

contribution from the induced field B I is not included, Figure ?.6a.

Since the tanqential component of the induced field will vary approximately

linearly across the thickness and have zero value at the mid-surface, the

normal force pfn correspondinq to it will have the same variation and be

self-eauilibratin 9 . The result for the normal force should therefore be

a good representation for the total force across the thickness.

The same approach is used for the calculation of the in-plane force.

Aqain, qood results should be obtained for the total force by averaoin

A2
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across the thickness. Here, however, the variation of the normal component

of the applied field B0 ives a variation of the in-plane force across then

thickness, which creates a body moment distributed over the whole plate,

Fin. ?.6b. This effect is not included in the present model since all the

variables have been evaluated on the mid-surface. The body moment can he

easily included, however. Moon (Ref. 25) has derived the followinq equa-

tion for the plate which includes such an effect, but neolects the in-plane

force in the plate.

42w
D v4w + ph F + x C C (2.108)

where

F j N ( x Z) dz (2.10na)

-h/2

c . fh/2  x Q Z) zdz (2.lnqb)

-h/2

When the plate is thin, and the drivina coil far away from the plate, the

applied maqnetic field will have only a small variation across the thickness.

The maonetic moment in such cases can be nealected without introducina much

error.

A couplinn effect not considered in the nresent model comes from the

rotational velocity of the plate normal, Fin. 2.6 (c). The rotational

velocity gives an effective tanaential current

J :B ° z 32wn

in a normal direction across the thickness. This causes a tanqential body

force distribution
o2 a 2w

Pf JBo (B) z
n n Ixat



Intenratina over the thickness, one obtains the body moment distribution

h2

M j pf z dz = (B )2 w z2 dz

-hi? -h/?

17 h3 (Bn )21x=1 ~ (B ) -- (2.110)

which is opposite to the rotational velocity and thus has a rotational

dampinq effect. This is the "classical" couplinn term reported by

Ambartsumyan et al. (Ref. 36). To consider this effect, one needs to add

the rotational inertia force term in the equation of motion. In the

present study, one is limited to the stretchino and the transverse flexural

deflection of the plate. The rotational effect is not considered.

A visualization of the macnetic body force in an infinitely lono nlate

may be obtained from Faraday's concept of the rraanetic line of force. The

maonetic line of force is the mannetic field line to which certain amount

of electromotive tension has been applied. The force depends solely upon

the strenqth of the macnet producino it. A compressive force is also

developed between the field lines and is at a rinht anale to them (Pef. 50).

When the line of force is cut, due to either the time-variation of the

field or the motion of the plate, exactly the same amount of force is

released. The mechanical stress must then be developed to equilibrate

the above-mentioned tension and pressure.

In Fia. 2.7a, the applied field is varyina at a relatively low fre-

quency. Eddy current is induced in the plate and the aenerated self

field is added to the aoplied field. The total maonetic field lines are

distorted from straicht but still penetrate throunh the plate. The tension

and pressure associated with the macnetic field lines are exerted on the

plate. It is to this case that the theory developed in this chapter is



59

(a)

(b)

Figure 2.7 Magnetic lines of force (magnetic field lines) in

and around an infinitely long conducting plate;

(a) low frequency case, (b) high frequency case.
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applied under the two basic maonetoelastic assumptions.

When the frequency of the applied field is hinh, the generated self

field completely screens the applied field from penetratinq the plate.

This situation is shown in Fig. 2.7b. The skin depth in this case is

limited to a very thin layer on the top and bottom surfaces of the plate,

and the eddy current is basically a surface current on the plate. The

same situation may be obtained at low freouencies for conductors with very

large conductivity (a %, -). The maonetic force in this case acts like a

surface force. Boundary conditions Eas. (2.13a) and (2.13b) should be

used for the electromaonetic field conditions in such problems. The

mannetic force is usually called the macnetic pressure in such cases.



Chapter 3

EDDY CURRENT CALCULATION ON RIGID CONDUCTORS

The qoverninq equations derived in Chapter Two for the calculation

of eddy currents are applied to ricid conductinq plates in this chapter

as a first step in the study of the couplino of eddy currents and defor-

mations. The one-and two-dimensional equations for steady state eddy

current problems are nondimensionalized and solved by the finite element

method. The role of the nondimensional parameters in these equations

are investiqated. Finite element transient analysis is also applied to

the one-dimensional problems. The results of the analysis are verified by

comparina with analytic solutions in the hiah and low freouency extreme

cases and with experimental data. The capability, input, and output of

the computer proarams developed are briefly described.

A literature survey of the eddy current calculation on conductini

plates is oiven in the first section. The intimate relation between the

quasi-static field equations and the circuit eouations is the basis of

many studies and provides another point of view to the stream function

formulation of the eddy current calculation used in this work. This

subject is discussed in the second section of this chapter.

3.1 Literature Survey

Because of the importance of the eddy current calculation in the

present research, a brief literature survey on this subject is aiven in

this section. The purpose of the survey is to provide a backoround for
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the comparison of the stream function method with other approaches to this

problem. Some key features of eddy current calculation and recent advances

are also hiqhliqhted.

As discussed in Chapter Two, eddy currents are found in any conductino

material which is subjected to time-varyino maanetic field. Its existence

is manifested by (1) induced Joule heatina, (2) a mannetic reaction field,

and (3) a maanetic force resultinn from the interaction of the inducina

and reaction fields. It is possible to put the eddy currents to nood use.

Examples are induction furnaces, which use the ohmic losses of hich fre-

quency eddy currents; electromaanetic nondestructive testinn, which uses

the macnetic reaction field of eddy current; and mannetic formin and

levitation, which use the maonetic force aenerated by eddy currents. It

is sometimes necessary to take steps to reduce the effect of eddy currents.

An example is the need to minimize losses to enable the cores of trans-

formers and rotatina electrical machines to carry the required maanetic

flux; one way this is achieved is by laminatinn the cores. Studies of the

effects of eddy currents may be found in the technical literature related

to all of these applications.

Rinorous analytic solutions to eddy current problems can seldomly be

obtained and are usually limited to infinitely exto 4ed conductors or

closed conductor shapes such as spheres or e" ,s --. Manv such problems

and some solutions may be found in Smythe (Ref. 51). Conductors with

finite lenath and more neneral shape are more difficult to handle. The

solutions are usually obtained by either analytic techniques such as

iterative approximation and Rayleiah-Reitz method, or by numerical means

such as finite difference, finite element, and boundary intearal enuation

methods. The choice of the solution method depends to a lame extent on



the formulation of the problem. The mannetic eneroy and variational

principle are the basis of many studies. The circuit analony provides

another model more intuitively appealinn to electrical ennineers.

The analytic technioues have the advantaae that the problem parameters

appear as variables in the solutions. The effect of alterina one or more

such parameters can therefore be fairly readily appreciated. The

numerical methods have wider application but the disadvantane that the

parameters are concealed in the numerical results produced from a aiven

set of data. Dimensional analysis in this case can he used to reduce the

excessive computation with numerous sets of data. Some illustrations of

the application of dimensional analysis in the present study are niven in

sections 3 and 4 of this chapter. A brief introduction to the use of

dimensional analysis in eddy current problems is niven in Stoll (Ref. 5?);

this is one of the few references which dealswith this specific application

of dimensional analysis.

Books and monooraphs addressino the analysis of eddy currents are

scarce in the literature. Two monooraphs on this subiect are Stoll (Ref.

52) and Lammeraner and Stasl (Pef. 53). The problems discussed are mostly

two-dimensional ones solved by analytical methods or finite difference

technioues. The application of finite element and boundary intearal

equation methods in this area has recently been developina rapidly. A new

monooraph edited by Chari and Silvester (Ref. 54) contains many discussions

of these methods in eddy current problems.

The eddy current problems studied most in the literature are the two-

dimensional ones. Takina rectannular coordinates to illustrate these,

one may have problems in which (1) the currents flow in the z-direction

only, and Jz' Hx9 and Hv are functions of x and y; and (2) the mannetic

I.1
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field has a sinale component in the z-direction only, and 1171 XI . and J' V

are functions of x and v. In the first case, it is convenient to use the

maonetic vector potential which is parallel to the current density to

formulate the problem. The mannetic vector potential k is defined as

V X = (3.1a)

S o =0(3.1b)

In case (1), A - A : 0 and A is related to current density throuohx y z

(Ref. 52)

A, ln k d (area') (3.?)
area

A two-dimensional diffusion equation may then he derived for A with

7

appropriate boundary conditions.

Silvester and Haslam (Ref. 55) first presented a finite element

Galerkin analysis of eddy current fields in maonetotelluric problems usina

such a formulation. Chari (Pef. 56) showed a similar formulation usino a

variational approach for the eddy current problem in mannetic structures.

Since the maqnetic vector potential must be calculated both inside and

outside the conductor, the discretization of space must be extended to

renions sufficiently far away from the conductor. Chari's study concerns

the hiqhly permeable iron part of the electrical machines where sinnificant

skin effects and ohmic loss are developed. The eddy current problem on

infinitely lona plates in the present research belonos to the same class

of two-dimensional problems but is directed to conductino materials with

small relative permeability. For such material the skin effect is not

well developed in the low ana intermediate frenuency ranne. The stream

function method used has the advantaoe of limitina the discretization to

the conductor body only, at the exnense of solvino a system of linear

I . . ' -



enuations with a full coefficient matrix.

For the case in which the maonetic field has only a single component

H many authors use the electrical vector potential T to formulate the

problem. The electrical vector potential T is defined such that

v x T (3.3)

For strictly two-dimensional problems, T has only one nonzero component

Tz, which equals H . A two-dimensional diffusion equation for T canZ 7

anain be derived. The problem may then be solved either by finite element

method through a variational formulation (Ref. 57), or by boundary

intearal equation method through a transformation of the differential

enuation into anintearal eouation (Ref. 58).

Silvester (Ref. 5Q) developed the useful concept of eddy current modes

from the eloenfunction expansion of the solution for this class of problems.

The orthoaonality of the eiaenfunctions enables an eouivalent circuit

representation of the eddy current distribution to be developed. Fach

eiaenfunction, or mode, forms a separate R-L circuit and there is no

naqnetic couplino between the modal circuits. In a subsenuent paper (Ref.

60), Silvester extends the modal network theory to infinitely lona flat

conductinq plates. The current density Jz is used to formulate the prob-

lem, and consideration is limited to the conductor itself. The plate is

subdivided into N parallel strips of eoual width. Fach strip is assumed

to carry a uniformly distributed current at all times. The thickness of

the plate comes into the calculation of the resistance R of the strips.

The inductances are calculated usinq the qeometric mean distance theory

of linear conductors. The solutions are then found by solvino the matrix

circuit equations. This eddy current modal theory has later been applied

to the studies of many other eddy current problems (Refs. 61, 62).



For the case in which the eddv current flows in z-direction only,

Silvester (Ref. 63) developed an intearal enuation essentiallv of the

Fredholm type which treats current density directly. This enuation has

been solved with various methods by Schaffer and Bandevet (Ref. 64),

by Silvester (Ref. 65), by Gopinath and Silvester (Ref. 66), and by

Silvester, Wona and Burke (Ref. 61). Trowbridne (Ref. 54) and Biddlecombe

et al. (Ref. 67) also developed an intearal equation formulation for eddy

currents usino the mannetic vector potential.

For two-dimensional eddy current problems in cylindrical coordinate

systems, the only nonzero comoonents of current and the mannetic vector

Potential are in the circumferential direction. A two-dimensional

diffusion enuation can be constructed for the mannetic vector potential.

Donea, riuliani and Philione (Pef. 6P) presented a finite element formula-

tion usina a variational method. Becker and Pillsbury (Pef. ?d), and

miya, et al. (Ref. 2) solved it by usini a finite element nalerkin

technique. Both studies consider coupled electromannetic-mechanical

effects. Many electromaonetic NOT studies also consider Problems with

cylindrical symmetry. Aost of them use a variational, or eneroy functional,

formulation. Fxamples are Palanisamy and Lord (Ref. 6Q), Nehl and Demerdash

(Ref. 70), and Hwano and Lord (Pef. 71).

All the two-dimensional problems discussed assume the conductors to

be infinitely lonc. For conductor plates with finite lenoth, the dd

current problem becomes three-dimensional. To simnlifv the problem, it is

usually assumed that the skin depth is larqe compared to the thickness so

that the current density can he taken as constant across the thickness.

The network analony, in many respects eauivalent to eddy current modal

theory, Plays an important role in such Problems. This analonv will he
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discusSed in more detail in the subsenuent section of this chanter.

Turner (Refs. 7?, 73, 74) has developed comnuter proorams for two- and

three-dimensional transient eddy currents. The conductinn materials are

represented by a network of current-carryinn line elements in order that

Maxwell's field enuations may be replaced by Kirchoff's circuit rules. Loon

currents are used as the variables in the analysis so that the Kirchoff's

mode enuations are satisfied automatically. Thin conductinq olatps and

shells are treated as two-dimensional problems by such a network model.

K.-eari and Su7uki (Ref. 75) developed a finite element circuit method

for the analysis of transient eddy currents on thin conductino plates and

shells. The electric vector potential is used to formulate the problem.

UInlike the two-dimensional problems such as loon nrismatic bars, the

electric vector potential now is not enual to the macnetic field but differs

bv an additional scalar potential d, i.e.

B = v T + v (3.4)

A set of circuit eouations are formulated in this method from the balance

of the maonetic enemy and Joule loss of the system. Eddy current modal

analysis is then performed throuch an einenvalue analysis of the derived

finite element circuit enuations. This formulation hives a set of linear

equatif ,ith fully symmetric matrices. The effect of the thickness comes

into the alculation of the resistance matrix. The inductance and resist-

ance matrices in This method are all calculated by numerical inteoration.

Compter dnd Hamels (Ref. 76) studied a coupled mechanical-eddy current

problem for a movable conductino disk usina a network circuit model.

Carnentor (Refs. 77, 7P) described a finite element network model and its

application to eddy currents in thin plates. Thus most eddy current studies

for thin conductinn plates use a circuit model for analysis. The apolica-



tion of variational methods is difficult because the dissipation term

affects the variational formulation. Hammond and Penman (Ref. 7Q) studied

the upper and lower bounds of the resistances and inductances of thick and

thin conductina plates usina a variational approach, but the problems they

treated are for the classical skin effect of current carryino conductors,

not the induction problems treated in the present research. De Mey (Ref.

80) presented a variational, intearal equation study of eddy currents in

plates usina a stream function representation. But he nealects the

reaction of the eddy currents on the mannetic field and therefore only

obtains a local solution of the problem.

3.2 Quasi-static Field Equations and Circuit Equations

As discussed in the last section, there is an intimate relation

between the circuit model and the various formulations for eddy currents

in thin plates. This relation is examined in this section throuah the

correlations between the Quasi-static Maxwell's equations and the rules

of circuit theory. The comparison provides a point of view alternative

fto the stream function method used in this study.

The scalar potential * and the vector potential are first introduced

for time varyinq fields. They are defined as (Ref. 32)

S (3.1a)

3-t (3.5)

and

v - - (Lorentz condition) (3.6)

These relations come from Equations (2.24). The electromaonetic field can

be completely described by
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V ? (3.7a)

V2 2 (3.7b)

Nealectina retardation in the quasi-static case, one obtains the neneral

solution
U 1
=1-f dV (3.Pa)

1 r
= V 0 dV (3.Ph)

The relations between quasi-static field equations and circuit equations

will be discussed in terms of these two potentials.

The circuit theory includes the two followina Kirchoff's laws:

(1) the current law: At any noint in a circuit, the current flow is

equal to the rate at which charce is passino through a cross-section

of the conductor at that point;

(2) the voltaoe law: Around a closed circuit, the algebraic sum of the

potential difference is zero.

These two laws may be put into the following equation form when there is

no capacitor in the drcuit, Fia. 3.1, which is the case in the present

study since eddy current arcina is not considered.

I in = S Iout (3.9a)

dl (3.96)
e = IR + L (3

In which I is the total current across the cross section of the conductor,

e is the applied electromotive force; R is the resistance per unit length;

and L the inductance of the circuit.
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Path of integration

I R L

Figure 3.1 Metallic conductor wire showinq path of

integration lying on surface and the

equivalent RI circuit.

J'dv'

Figure 3.2 Mutual inductance between circuits.

Variation of O'v' induces an evnf in dk.
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Fa. (3.9a) comes from the enuation of continuity of current and is

automatically satisfied bv the potentials and * defined before. The

relation between Eo. (3.9b) and the ouasi-static field equations is dis-

cussed below.

A circuit is defined as any closed path. For the one shown in Fin.

3.1, one first separates the total electric field t in the conductor into

two parts: ' is that due to charaes and currents defined by Fq. (3.5),

and to is the impressed field due to enerqy sources such as the external

excitinq coil.

+ t (3.10)

Then

0

+ +

= +- - +V *(3.11)

Intearatinn around the circuit alona a nath on the surface of the conductor

one has

~o . dt dt + 2 • dk + v. dt (3.12)

The term on the left-hand side of the above equation is the applied electro-

motive force, which is designated e as in Eq. (3.9h). The last term is zero

since without retardation one has

vo dt = -. dt = dt = o (3.13)

The second term on the riaht-hand side of Eq. (3.12) may be written as

-d • di for a riqid stationary conductor, in which is determined by

Ea. (3.Sa) in the quasi-static case. Assume that the conductor is a wire

with small cross-sectional dimensions so that ' dV' in Eq. (3.8a) may be

replaced by I dt' where I is the total current across the cross section of
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the wire. One has

1l dt' (3.14)

and

d dI

UT dt L dlf (-.5)

in which

L = f j f .t. d t

is the inductance of the circuit and is a function only of the aeometry of

the circuit. Another way of defining L is the followina:

LI Ad

Lv xA. d

sfs  . d (3.16)

or

L I s . d (3.17)

in which is the total magnetic induction.

The first term on the riqht-hand side of EQ. (3.12) involves J/l

which represents the total electric field k at the surface of the conductor.

For sinusoidal time variations i is related to the total current I by

1(3.18)

in which Ac is a complex number having the dimensions of area, but not

actually equal to the cross-section area of the conductor. It is complex

because the current density at the surface of a conductor is not in phase

with the total current when a skin effect exists. In such cases /oAc ,

designated by Z, is called the impedance (per unit lenqth) of the conductor.

When the frequency is sufficiently low that the skin effect is not

well developed, the current is essentially uniform over the entire cross-

I . J" " . ,". . . . " " " i .



73

section of the conductor. In such cases Ac is the actual cross-sectional

area A of the wire and

d • = I -- dt = IR (3.19)

in which

R = dt (3.20)

is the usual resistance per unit lenqth of the wire.

The ouasi-static field equations are therefore related to the equili-

brium equation (3.9b) for a closed circuit. In the induction problem, the

emf e is aenerated by the varyina macnetic field due to the excitinq coil,

Fin. 3.2. Assume that the induced current in the exciting coil b is zero,

i.e., t'iat 1° is voltaoe-controlled or that the excitina coil has infinite

conductivity. One has

e Ao (3.21

in which is the comncnent of vector potential due to the maonetic field

of the excitinq coil and is aiven by

1 0Vb r dVb

1b di ' (3.22)

Substitutina Eo. (3.22) into Ea. (3.21), one has

e -M i- (3.23)

in which

M =*wla fb d d (3.24)

is the mutual inductance between the coils a and h.
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The relationships established above for a sinole discrete current loop

use exactly the same assumptions applied in the present work for a thin

conducting plate, i.e., the skin effect is not sicnificant and the current

is constant across the thickness of the plate. A further similarity occurs

between the circuit equation that describes the discrete circuit and that

for the eddy current modes on the conducting plates. The eddy current

modes are certain distribution patterns of the current density that are

electrically and magnetically uncouplpd from each other. The modal distri-

bution can be obtained by decomposina the total current distribution into

components orthonormal to both resistance and inductance operators. The

derivation is briefly described below.

The law of conservation of magnetic energy, or the Poyntinq's theorem,

for the induction problems states that (Ref. 52)

dU - dU m (3.25)

in which U is the total magnetic energy due to the current distribution,

W is the total ohmic loss, and Urm the mutual magnetic eneray between the

external magnetic field and the induced current. Assumino constant current

across the thickness of the plate, one has (Ref. 49)

= IU f f  ol P" dS dS (3.26a)

W = f n 4 • q dS (3.26b)
S

Um = 4 -. odS (3.26c)

in which n is the area electrical resistivity, 0 is the magnetic vector

potential of the externally applied field, and is the total induced

current density across the thickness of the plate.
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By usina an electric vector potential T for the current density,

and the finite element technique Kameari and Suzuki (Ref.75) obtained the

following coupled circuit eouations for the plate

,L] t {VI + tRI {VI = (e (3.27)

in which [LI and [RI are the time-independent inductance and resistance

matrices, respectively. Both rL! and fRI are positive-definite and fully-

populated; however, for a uniform mesh they are also symmetric. Apnlyino

the generalized einenvalue analysis to the coupled system of equations,

Kameari and Suzuki obtained the eddy current modes {Fn , n = 1,?, ...9 N,

where N is the total number of the nodal points. Since

FL] {En I xn (RI {E n  (3.2P)

one has

{EmIT [R] (En I 6mn (3.29a)

{EmIT [L] {EnI = An 6mn (3.29b)

The modes are therefore electrically and maanetically uncoupled. By

expandinn the potential T by the eddy current mode,

N
{T)= Pn (En (3.30)

Sn=ln n

one obtains the uncoupled equation for each mode

d dP n + An Pn = n en n=l,2, ... , N (3.31)

in which

en = (EnIT (e (3.32)

The modal equations (3.31) are electrically and maanetically uncoupled to

each other and are linked maqnetically to the drivinq field through Eq.

X* -A-.-.#---

i..
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(3.3?). Ea. (3.31) is completely equivalent to the circuit equation (3.qh)

with resistance, inductance, and decay time constant 1, x , and x n respec-

tively. The full analooy between the circuit theory and the quasi-static

description of eddy currents on thin plates is thus completed.

3.3 Eddy Currents on Infinitely Lona Plates

The finite element Galerkin techninue is applied to solve steady

state and transient eddy current equations for infinitely lona conductin

plates. The formulations and the Fortran codes developed are described

in subsection 3.3.1. To facilitate parameter studies for this problem,

the steady state eddy current enuation is nondimensionalized. A study of

the relevant nondimensional parameters is presented in subsection 3.3.?,

toaether with other examples which provide analytical and experimental

verifications of the numerical results.

3.3.1. Finite Element Formulations for Steady State and Transient Problems

The transient eddy current equation is iven by Ea. (2.104), with-

out the couplina terms,

L L
-YU2 + 1~ ~ - --- 2L-.--h dX '- ch-b (3.33)

)o (x-x') 2 +

in which X is used to denote the position in physical units, and L is the

total width or span.

3.3.1.a Formulation and Implementation for Steady State Problems

For steady-state harmonic currents in the plate, Eo. (3.13) may

be nondimensionalized into

-A
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d JR4 + i = iRP(x) (3.34)
dx ( -x) +-

in which x and E are distances across the width nondimensionalized with

respect to the thickness h; = i0 eiut ;B = (u/A)B(x)I'eiWt; thez

maonetic Reynolds number R = wouoh ?
, which is related to the skin depth 6

throunh R - ?(h/) 2; To is the current in a nearby exciter coil; and

is the nondimensionalized width.

The finite element (FF) ralerkin method is used to solve the intearo-

differential enuation (1.14). t is approximated alobally and locally by

piecewise linear models

M k tk (3.35a)
k=l

E k
k:l NE Ok (3.35b)
k=l

in which G is the total number of nodai points, the sunerscript E denotes

the E-th element, and Mk are the qlohal interpolation functions qenerated

from the local linear element shane functions N The linear aloebraic

equations for each element are

2 ? GF E[ Fk
-k Sk~k - F k E kk + I F 0  = IR (3.36)
kul jkk k~l jk' k=l Ok

in which

sE dN E dNk E E r!NNdSk =  - dx ; ,i j R Nj Nkd
Ik ox 1k f j

E E

(3.37)

Qk 7 7 Mk( )W (r) d ; R j N Bdx

0

o *
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the weiahtini functions Wused in calculatina the intenral term is

rN (x)
WE( I ? dx (3.3P)

~+

Both Eos. (3.37) and (3.3P) are intearated analytically. The resultina

element matrices are shown in Appendix A for both the local and nonlocal

terms. The assembled olobal matrix is complex, nenerally nonsymmetric,

and fully populated. The usual limited connectivity (banded matrix)

finite element representation is lost due to the nonlocal nature of the

problem.

When the frequency of the external mannetic field is low, the effect

of the self field is small. The solution in this case will approach the

local solution obtained by dropoino the second and third terms on the eft

hand side of Eq. (3.34). When the frequencies are hioh, the distribution

of the eddy current is primarily influenced by the self field. The

solution will approach the one obtained by dronvino the first term on the

left of Eq. (3.34). The solution so obtained is an asymptotic value for

the hiqh frequency limit, and is called The "imane solution" in the

literature.

A Fortran proqram EDDY1 has been developed based on Eqs. (3.36)-(3.38).

It is desiqned to perform the followina calculations:

(1) Steady state local solutions of stream function, current,

temperature, and pressure,

(2) Steady state nonlocal solutions of stream function, current,

temperature, and nressure, and

(3) Steady state imaae solution of stream function, current,

temperature, and pressure.

L-lh um hm., i,,maI mhi'- ahL.......~~. -... - ,'



To perform the calculations necessary to construct a spectrum, EDDYl performs

the above calculations for any number of mannetic Reynolds numhers in one

run. Multiple load cases (un to in) are allowed. Fach load case will he

solved for all the mannetic Pevnolds numbers specified for that run.

Presently, EDDY1 can handle uniform magnetic field cases and cases

where the fields are nenerated by any number of conductor wires parallel

to the plate. The strengths and senses of the currents and the positions

of the wires may be different. Space has also been left to include other

types of excitino fields in the prooram.

Proqram EDDY1 takes the geometric information of the plate and magnetic

field source information as input. The total numbers of nodal points, load

cases, parameter sets, and the plottina option of the output must be

specified on the master input card. Nodal point information may he oenerated

for portions of the mesh that are unifcrm.

The type of source of maenetic field is specified. No other informa-

tion is needed for a uniform maonetic field. For the parallel wire cases,

the positions, senses, and the relative strengths of the currents in each

wire must be input subsequently.

All the input data must be nondimensionalized accordina to the con-

ventions presented in the formulation.

Values of the stream function, eddy current, temperature induced in a

half-cycle of the current, and time-averaaed maonetic pressure exertee on

the plate are produced as output of the proaram. The stream function and

eddy current are calculated in complex form. The stream function values

are calculated at the nodal points of the mesh, while th- current, tempera-

ture, and pressure are evaluated at the centroids of the elements. The

stream function and eddy current are Oiven in complex form, and the modulus



and phase anale are calculated for the eddy current. Values of the modulus

and phase annle for different freouencies may be used to nenerate the

spectrum of the current any any point on the plate. These curves and the

spectrum of the excitinn current may be used to calculate the transient

current at the Point by fast Fourier transform techninues.

All the outputs of the prooram may be plotted usino a printer-plotter

subroutine. This capability is optional and can be snecified in the input.

In this prooram the local solutions are printed out and plotted

Parallel to the nonlocal solUtions for comparison. When there are several

load cases, the results are printed out in orours in the senuence of the

load numbers. In the multiple parameter (freouencv) cases, this is done

for each Reynolds number. Title lines will be Printed for each parameter

to distinOuish the different orouns of output. Imane solutions, which are

independent of the Reynolds number, are Printed out last in the senuence

of load cases.

3.3.1.h Formulation and Implementation for Transient Problems

The Calerkin finite element (FE) version of the transient enuation

(3.33) is formulated in a way similar to the steady state problem. It is

inteorated with respect to time by an implicit scheme. q, is appr,:imated

in physical units oloballv and locally by

£ Mk 'k (3.39a)
k=l

E 2
E N (3.30b)

k=l

The linear equations for each element are
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2 SE P E + Q E E (3.40)

kul Jk*k k-l ik k k-1

in which

0Jk = I Mk(X)W (X)dX ; R- h NE B dX (3.41)

where the weighting function is:

h NE(M
(x) - x') dX (3.42)

Equations (3.41) and (3.42) are again integrated analytically, and the

resulting expressions are those given in Appendix A. The global matrix

form of Eq. (3.40) is

[A] {1 - [S] ($, • (R) (3.43)

in which

(A]u-[]- [P] (3.44)

Again, [A] Is full and generally nonsymmetric.

The transient equations (3.43) are integrated using the following

scheme

( [A] - (l-e) S) t

( T [A] + e [SI) {#)t + e (R)t + (l-e) (R)t+At (3.45)

e. 0.5 has been used in all the problems analyzed.

,. ;A
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A Fortran program EDDYlT has been developed based on Eqs. (3.4l)-(3.45)

and has been built into a more general transient analysis program EDDYBEAM

for the coupled electromagnetic-mechanical effects. The purely transient

one-dimensional eddy current analyzer EDDYlT may be recovered from it by

specifying the input parameter LINK to be zero. EDOYlT is designed to

perform the following calculations for pure eddy current problems:

(1) transient local solutions of stream function, current,

temperature, and magnetic force, and

(2) transient nonlocal solutions of stream function, current,

temperature, and magnetic force.

EDDYIT handles one load case In one run only. The two types of

magnetic fields included are a time-varying uniform magnetic field and a

field generated by any number of conductor wires parallel to the plate.

The strength and sense of the currents and the positions of the wires may

be different, but the time variations of all the currents must be the

same. The time function may either be analytic and calculated at each

time step, or numerical and read in from the input data. Presently a

half-sine function, a continual sinusoidal function, and a ramp function

of time have been included in EDDYIT. Flexibility has been left for the

user to create additional modules if other analytic forms of the time

function are preferred. The temperature calculated is the instantaneous

temperature rise; the effect of heat conduction is not included.

Geometric information of the plate, source information of the magnetic

field, relevant physical constants, time integration parameters, and the

numerical information (if any) describing the time function of the field

must be input to the program EDDYlT. The units of all the input values must

be consistent. The rationalized MKS system (Giorgi system) has been used
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for all the problems in the present research.

Mesh aeneration and incremental plotting capabilities are also Includ-

ed in EDDYIT.Time history plots at selected points and spatial variation

plots at selected time-steps for both current and magnetic force may be

produced in the same scale for comparison. Appropriate mesh qeneration

and plotting information must be input if these capabilities are used.

Values of the stream function, eddy current, maqnetic force, and

temperature at each time step are produced as output of the program. The

stream function values are calculated at the nodal points of the mesh.

The eddy current and temperature are evaluated at the centroids of the

elements and are constant within each element. The magnetic forces are

calculated at the integration ooints of each element and vary within each

element with the tangential component of the applied field. The outputs

may be plotted using a library subroutine. A short form of the output is

provided as an option if lono time solutions are needed. Local and non-

local solutions are handled as different jobs and must be executed separate-

ly. The type of analysis (local or nonlocal) must be snecified in the

input.

3.3.2 Numerical Results and Experimental Verifications for Infinitely

* Long Plates

The programs EDDY1 and EDDYlT have been applied to a number of problems

to test and verify the programs' validity and to demonstrate their utility

for problems of scientific and practical interest. A nortion of the

verification process is the comparison of the computed results with experi-

mental measurements. A summary of these numerical results is given below.
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3.3.2.a Steady State Analysis by Program EDDYI

The first test of the numerical techniques discussed in this

section is the calculation of induced currents in a lona rectanaular plate

by a two-dimensional maanetic field usina Program EDDY1,Figure 3.3. Near

the center of the plate, Section C-C in Flgure 3.3, the end effects of the

plate are negligible, and the currents are one-dimensional or are parallel

to the lona edges of the plate. The external magnetic field used in the

test cases was that due to parallel current filaments above the plate and

a uniform time dependent magnetic field. In addition to the induced

current distribution across the plate, the induced temperatures and magnetic

pressure distributions were calculated.

The following objectives were met with the program EDDYl.

a) Comparison of low magnetic Reynolds number (R) results with

direct quadrature of local theory.

b) Comparison of hiah R results with the imaae method.

c) Demonstration of the importance of nonlocal theory for

moderate frequencies or R.

d) Comparison of finite element calculations with experimental

infrared measurements reported in Refs. 101 and 102.

e) Combination of the finite element (FE) results for different

field frequencies with the fast Fourier transform (FFT) to

predict dynamic currents and pressures.

f) Demonstration of the importance of the edge effect in

increasing the current density and magnetic pressure.

g) Calculation of the magnetic forces on a lona plate due to

a tilted coil.

. 4q
. . -- ,
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Figure 3.3 Induced currents in a long rectangular plate.
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h) Examined the effect of a banded matrix as an approximation

to the full matrix or complete nonlocal solution.

i) Demonstration of the size effect of the width on the induced

current through a different nondimensional magnetic Reynolds

number Rw .

Each of these will be described separately below.

a) Comparison of FEM with Direct Quadrature for R<<I. When R<<l

one may drop the nonlocal terms in Eq. (3.34) and obtain the local

theory for the stream function, i.e.

d.= iRB(x) (3.46)

dx

The solution for the one-dimensional case can be found by direct integration

of a given B(x). Comparison of the low Reynolds number solution for the

finite element method (FEM) and direct quadrature is shown in Figure 3.4
for a pair of current Faments centered above a long conductinq plate. The

results show excellent agreement.

b) Comparison with the Image Method. When the frequency is high, i.e.,

R>l, the nonlocal effects act to prevent the magnetic field from penetrat-

ing the plate. In this limit the solution can be approximated by consider-

ing an image coil below the plate which serves to cancel out the normal

component of the total magnetic field (Figure 3.5). The results of the

one-dimensional FEM with the image coil calculation are shown in Figure 3.6

and again show excellent agreement.

c) Nonlocal vs. Local Theory for Eddy Currents. A comparison of the

local and nonlocal theories for eddy current distribution is shown in

Figure 3.7 for different R or frequencies. It is clear that even though

the skin depth may be several times the thickness (R = .l, 6 = 4.5h), the

i.I ______________

a -- . -
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Figure 3.5 The image method for high R.
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nonlocal distribution differs significantly from the local theory. The

importance of the nonlocal effects is not recognized by some eddy current

calculations which neglect the reaction field of the induced current

(Ref. 80).

A more fundamental difference between the nonlocal and local effects

concern the magnetic pressure. When the nonlocal or self field of the

induced currents is neglected, the average force on the plate for a sinus-

oidal current is zero. The nonlocal or self field effects are necessary

to obtain a time-averaaed force on the plate between the sources of the

external field (such as coils or current filaments) and the currents in

the plate.

The phase difference between the driving magnetic field and the

induced eddy current is 90 deorees in the local theory, as is evidenced

by Eq. (3.46). The phase difference is zero in the image solution. The

induced current densities in Figures (3.4) and (3.6) therefore have the

same phase across the width of the plate. For the intermediate case, the

eddy current density has different phase angles at different locations of

the plate. Figure 3.7 shows the modulus, or the maximum value, of the

current density across the plate.

d) Comparison of FE Calculations with Experimental Measurements.

An important feature of this research proqram has been the experimental

verification of the numerical calculations. To check the calculations,

measurements of one of several physical quantities along the surface of

the plate must be made such as electric or magnetic fields, induced

temperature, or magnetic pressure. Measurement of electric or magnetic

fields associated with the induced currents in the plate involve takinq

data of a sufficient number of points to map out the current distribution.
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It has the advantage that the time hisLory of the electromannetic field

variable at buch points may be more easily determined. Such a technique

will be used in the experimental verification of the results of the

transient analysis. To verify the current distribution, an infrared

scanning technique which senses the incremental temperature distribution is

used (Ref.102).This technique is based on the fact that for small times

after the induced currents are qenerated, the heat conduction can be

neglected and the induced temperature is proportional to the square of

the current density. The heat equation is given by

-KV2 T + c 3-T -- 2(3.47)

in which K is the thermal conductivity, and c is the heat capacity of the

plate. Under appropriate conditions on the qradient of temperature and

time, one may neglect the first term and write

l  I t  2
T 41 J2dt (3.48)

Co
0

To simulate a one-dimensional problem, a rectanqular multiturn

induction coil is placed parallel to a flat stainless steel plate and

induced temperatures are measured across the plate under the middle of the

coil, Figure 3.8. The two-dimensional infrared scanner used is described

in Ref. 102. An infrared thermogram of the temperature or J2 pattern in

the plate due to a pulsed rectanqular coil is shown in Figure 3.9. The

induction coil has damped sinusoidal currents. Comparison of the qualita-

tive behavior of the measured temperature and the calculated temperature

distribution alonq the plate usinq an effective frequency is shown in

Fiqures 3.10 and 3.11 for two different frequencies. Both calculated and

I
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Figure 3.9 Photograph of an infrared thermogram for
currents in a plate as induced by a pulsed
rectangular coil.
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Figure 3.10 Comparison of FE solution and measured temperatures for

a pair of current filaments centered above a long
conducting plate (R 0.071).
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measured data have been normalized. Excellent qualitative aareement can

be seen for the coil centered above the plate, Figure 3.10, and for the

coil near the edge of the plate, Figure 3.11.

Quantitative aareement is difficult because the calculations are for

a harmonic excitation field and the experiment uses pulsed current in the

coil. This problem is solved by calculating the induced current density,

as a function of freouency, and usina a fast Fourier transform (FFT) to

calculate the induced current as a function of time, as shown in Floure

3.12. This data is then inteqrated usina Eo. (3.48) above to calculate

the temperature as a function of time at the point of maximum temperature

in the plate. Using the maximum temperature in time alona with the calcu-

lated distribution as in Figure 3.12, a quantitative comoarison of calcu-

lated and measured temperature were made as shown in Flaure 3.10. The

measured value: are about 20% below the calculated values. A comparison

of the FFT result and a subsequent transient analysis result for the same

problem is given in sub-subsection 3.3.2.b. In light of this later

comparison, the difference between the experimental result and the FFT

analysis appears to arise partly from the rough calculation in the FFT,

i.e., the cutoff freauency used may be too low and the number of terms

used in the finite sum approximation of the Fourier intearal may be in-

sufficient. The crudeness of the FFT result is also evidenced by the late

arrival of the peak value of the induced current in Fioure 3.12. In the

FFT analysis of the present problem a half-sine pulse of the drivina current

is used, while in the experiment the real driving current has a damped

half-sine variation. The maJor cause of the difference between the calcu-

lated peak temperature and the measured one is probably heat conduction

the effect of which is not included in the calculation. The infrared
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Figure 3.12 Transient exciting and induced
currents as functions of time.
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picture was taken approximately 16n ms after the pulse was applied. This

may explain the loss of the sharp peak of the temperature curve under the

wire. In sum, the FFT result obtained for this problem is satisfactory

considerina the approximations involved.

e) FE and FTT Methods for Pulsed Maonetic Fields. As discussed

above, the distribution of current in the plate, as well as induced

pressure and temperatures are for harmonic excitation. For Pulsed or

transient excitation fields ko(t), one may decompose the field into its

spectral components

(

Bof(W) (t) elwtdt (3.49)

If the induced current is calculated as a function of frequency JGW), for

an excitation B e'it, the time variation of current can be found from the

inteqral

J(t) J(w) f(w)e-iWtdw (3.50)

The function J(w) is found by calculatino the induced current for

various frequencies usina the nonlocal theory as shown in Fiqure 3.13.

A polynomial is then fitted to these points over the sionificant frequency

domain of f(w)o The Fourier inteoral is then approximated by a finite

sum and the summation carried out usinq a fast Fourier transform algorithm.

The resulting time history of current in the plate is shown in Ficure 3.12.

From this history the maonetic force and induced temperature histories in

the plate can be calculeted. A detailed discussion of the FFT method in

the transient solution of the diffusion equation has been given in Chapter

8 of Reference 54.



100

.-62A.7

Phase angle is 42 0

-3.0- (radians) 2hjx
-A 0 +A

A = 102h

-2.5-

Localca

lo0.1 0.2 0.3 R

Modulus Ih

0.6- LocalI

0.4-

0.2-

0
0 0.1 0.2 0.3 R

Figure 3.13 Spectrum for current at x =-0.62A for
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f) Effect of Edges on Induced Eddy Currents. One of the immediate

results of infrared scan experiments on induced eddy currents in plates

is the observation that hiah current densities will occur when the excita-

tion field is concentrated near the edges of the plates. This can be seen

in Figure 3.14a,b, where a coil is moved closer to the edge of a rect-

angular plate. The results of the one-dimensional program also show a

distinct edqe effect for both the paired current filament induction,

Figure 3.4, and the uniform field induction, Ficure 3.15.

g) Pressure Distributions Due to Tilted Induction Coils. Both

magnetic forming devices and magnetic levitation devices use current carry-

ing coils near plate-like conductors. The effect of tiltinn the induction

coil has been calculated as shown in Figures 3.16 and 3.17. The increased

magnetic pressure under the filament close to the plate produces a moment

on the plate and a restorino moment on the coil. The effect of lateral

movement of the coil can also be seen in Figure 3.17, and the effect of

lateral movement on the restorino moment can be calculated.

h) Effect of Reduced Matrix Band on Nonlocal Solutions. One

manifestation of the FE implementation of the nonlocal theory is that the

algebraic FE equations become full rather than banded. Nevertheless, the

nonlocal effects which cause this loss of banding are proportional to

/r2 in which r is the distance from a self-field source point on the

sheet conductor to the field point in question, Fo. (3.34). One method

of restricting the nonlocal effect at any field point on the sheet would

be to exclude source points at distances from the field point greater

than some cut-off value of r. For a uniformly sDaced finite element mesh,

this would yield a banded matrix, but the size of the band would now be

determined by the cut-off distance. The choice of an appropriate cut-off
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Figure 3.14 Photographs showing effects of edges

on induced eddy currents.
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distance will be dependent upon the particular problem. The solution to

the restricted nonlocal problem with an appropriate cutoff distance would

be negligibly different from the full nonlocal solution, and considerable

savings in computation would be achieved due to a reduction in the non-

local integrations required, Eq. (3.34).

As a preliminary test of this strategy, the expedient of merely

reducing the bandwidth of the FE equations was utilized by neqlectinn all

terms outside of selected bandwidths. For the nonuniform mesh necessary

for the eddy currents induced by a pair of external current filaments,

this procedure is not equivalent to the selection of a cutoff distance.

(A finer mesh is required under each filament). Nevertheless, as illus-

trated in Fiaure 3.18, the reduction in bandwidth provides a variation

in the solution that approaches the full nonlocal solution. These results

provide evidence that reduced nonlocal solutions will be efficient and

useful in some situations. Further work will be needed to develop criteria

for the selection of appropriate cutoff distances and to implement it in

the computer program. For the efficient solution of lare, dense matrix

systems, Lachat and Watson (Ref. 81) presented a similar ad hoc approach

for the numerical treatment of boundary integral equations in three-

dimensional elastostatics. Jeng and Wexler (Ref. 82) described a successive

element iterative scheme in their studies of three-dimensional static field

problems using a boundary integral equation formulation.

I) Dimensional Analysis of the Size Effect of the Plate. The

numerical results obtained from proqram EDDYI presented so far have been

based on a single nondimensional parameter: the maanetic Reynolds number R.

R is defined as R = wvah 2 and is related to the skin depth 6 through

2
R = 2(h/6) , as discussed in connection with Eq. (3.34). For infinite

- 4 )
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plates, except for the geometric parameters characterizing the positions

of the exciting wires, this is the only possible nondimensional parameter

characterizing the plate. For Plates with finite width t, the size effect

of the width (span) comes in an another nondimensional parameter charac-

terizinq the effects of both the thickness and the width of the plate is

possible. The new nondimensional parameter is designated by Rw and is

defined and related to R as

2
R = wuaht = 2ht/ 2 = Rt/h (3.51)

wwThe role of R w is illustrated through the one-dimensional plates with

varyino width/thickness ratio in a uniform, sinusoidally varyina maonetic

field. The analyses with EDDYl have been performed by Hara (Ref. 83).

Figure 3.19 shows the maximum induced current at the edoes of the

plate versus the Reynolds number R usino t/h as a Parameter. Figure 3.20

shows that the different curves can be collapsed to a single curve by

using the new nondimensional parameter Rw .

Figure 3.21 shows the sum of the moduli of the induced currents

through the width of the plate versus R for different k/h values. Again,

the different curves can be mapped to one by usina the new parameter Rw

as shown in Figure 3.22.

To determine the total torque and force on a conductor, one needs

to know the real current distribution. Both the real and the imaginary

parts of the induced currents therefore need to be considered (Ref. 33).

Figure 3.23 shows the real and imaginary parts of the total induced

current as functions of the Reynolds number R for two different t/h

values. The real part a' is the total current across the width in phase

with the driving magnetic field, the imaginary part " is the total

current 90 degrees out-of-phase with the drivina field. These curves

iA,
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Figure 3.23 Total induyd current vs. Reynolds number
R =2(h/6) for a plate subject to a
uniform transverse field.
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are plotted in Figure 3.24 usinn the new parameter R w  Again, aood

correlation is obtained althouah some differences occur at hiah Reynolds

number cases.

3.3.2.b Transient Analysis by Proaram EDDYlT

The transient analysis proaram EDDY1T has been verified analytically

and experimentally in various cases. The followina is a summary of some

of the results:

a) Comparison of the local solutions with the analytic results.

b) Comparison of the steady state nonlocal solution with the

EDDY1 results.

c) Comparison of the transient solution with the FFT and

infrared experimental results of Ref. 102.

d) Comparison of the transient solution and experimental

measurements of eddy currents obtained with a search coil (Ref. 101).

All the cases analyzed use the physical parameters of the problem in the

rationalized MKS system. Each of these problems is described in more

detail telow.

a) Comparison of the Local Solutions with the Analytic Results. The

local solutions of the two-wire problem studied previously with the program

EDDYl(Section 3.3.2.a; Figure 3.10)are calculated and presented in Fioure

3.25. Since the reaction field is neglected, the solution may be obtained

by direct integration and is the same for each cycle of excitation. A

stainless steel plate is used in this problem. The FEM solutions obtained

with two different time-step sizes do not differ siqnificantly from the

analytic results.
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b) Comparison of the Steady State Nonlocal Solutions with the EDDY1

Results. The nonlocal solution of the same problem with a continual

sinusoidal exciting current is calculated by program EDDYlT. Fiaure 3.26

shows that the induced current at point G becomes nearly steady state

after two cycles of excitation. The macnetic Reynolds number in this

problem is R - 0.079. The modulus and phase anale of the induced current

when it becomes steady state are the same as predicted in Ficure 3.13.

In Figure 3.26b, the maanetic oushinq force is shown, and the fact that

its average value is nonzero is clearly evident.

The size of the time step used in this problem is At = 0.041 ms, or

one twentieth of the period of the drivina current. Figure 3.?7a shows

the eddy current distribution at the 53-rd time step when the induced

current at point G is almost at its maximum. Fiaure 3.27b shows the

current distribution at the 57-th time step when the induced current at

point G is nearly zero. Figure 3.27c shows the current distribution at

the 60-th time step (wt - 6w) when the driving current in the wire is

zero. Figure 3.27d shows the current distribution at the 65-th time step

(wt = 6 w) when the drivina current in the wire reaches its maximum value.

The corresponding magnetic force distributions at these particular time

steps are shown in Fiture 3.28.

c) Comparison of the Transient Solution with the FFT and Infrared

Experimental Results. The transient eddy current problem discussed in

Figures 3.10, 3.12, and 3.13 is re-analyzed usinn proaram EDDYlT. The

results are shown in Figures 3.2q and 3.30. The induced current density

calculated at point G underneath the wire is presented in Finure 3.29

and compared with the FFT result from Figure 3.12. It is seen that the

two results have nearly the same magnitude but the one calculated by EDDYIT
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shows more accurate time characteristics. This is evidenced by the late

arrival of the second peak of the FFT result which should occur physically

at the time when the drivina current becomes zero. The correct arrival

time of the second peak has been Predicted by the FDYlT result.

The induced temperature rise is shown in Fioure 3.3n and compared

with the infrared experimental results. The infrared Picture is taken

approximately 160 ms after the pulse is applied, as mentioned in connec-

tion with Fioure 3.10. The prediction of the FFT result for the tempera-

ture is also shown for comparison.

d) Comparison of the Transient Solution and Experimental Measure-

ments of Eddy Current Obtained with a Search Coil. A search coil

technique has been used to measure the eddy current induced on an

aluminum plate. The arrannement of the experiment is described schemeti-

cally in Figure 3.31. To simulate a one-dimensional plate, the measure-

ments were taken alonn the central line of a rectanoular plate with

lenqth/width ratio approximately enual to 4.2 (Ref. 101).

To measure the real induced current, the search coil readinas at

points A and B were first taken using a plastic dummy plate. The measure-

ments were then made at points A and 8 for the conductina olate. The

induced current densities are obtained by subtractino the readinos obtain-

ed for the plastic plate from the readins for the real plate. The search

coil readinos obtained at point A underneath the wire are shown in Fiaure

3.32.

The induced current densities at points A and 9 so determined are

compared with the numerical results obtained by usino prooram EDDYlT in

Fiqure 3.33. The qualitative aqreement of the results are aood at both

points. Ouantitatively some differences exist. These nuantitative
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Figure 3.31 Arrangement of the search coil experiment for
a long plate, (a) Isometric view, (b) Plan view.
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Figure 3.32 For the plate in Figure 3.31:

(a) Search coil reading at point A and the
applied current with a plastic dummny plate,

(b) Search coil reading at point A and the
applied current with an aluminum plate.
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differences probably arise larqely from the approximations involved in the

experiment. Namely, each of the two search coils used has a finite length

of about 10 mm and finite cross sectional dimension of about 10 mm. The

dimension of the excitinn wire itself is about 2 mm. The measurements

obtained are therefore averaged values over te l mm lenoth of the search

coil. One example of this averaginq effect in the experimentai results

can be seen from Figure 3.33. The two experimental curves have nearly

the same peak value at points A and B, while in the infrared results and

in all the numerical calculations, Figure 3.34, the induced current under

the wire is definitely higher.

3.4 Eddy Current on Finite Plates

The finite element nalerkin formulation and the Fortran code EDDY2 for

two-dimensional problems of steady state, harmonic currents in flat plates

are presented in Section 3.4.1. The treatment of the nonlocal intearal

term is described in some detail. Some numerical results and their verifi-

cations are presented in Section 3.6.2.

3.4.1 Finite Element Formulation for Steady State Problems

The two-dimensional eddy current equation is obtained from Fq.

(2.103) by dropping all the coupling terms. For steady state, harmonic

currents in a flat plate, the eouation may be nondimensionalized into the

following form.

I f2 i2Rx + iR (x - n 2  ]31 2 dr.dn - i2wRO(x,y)

area (Y-) + (3.51)

in which the coordinates are nondimensionalized with respect to half the

thickness h 4hBe it" B0  (B i)eeiWt the mannetic Reynolds number
7 T; = -e , z

- ... . . .. .. : - -- . . .. .. • ..... ; . ... ... i -1-_, ... ,- '
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is R which is related to skin depth 6 throuoh R = () ; and

8 is the reference mannetic field.

The finite element Galerkin method is used to solve Fo. (3.51). 6 is

approximated qloballv and locally by

F F E (.?~'
k t N € (3.5a,b)

k=l k k=l

in which G is the total number of nodal noints, F denotes the Fth element,

Mk are the quadratic qlobal interpolation functions nenerated from the

local element shape functions Nk. Six-node trianaular elements are used

here. The local element shape functions are all nuadratic in this case.

The element alqebraic equations are

6 F 6 F , F (3Kl ,i Fk+ i k I P k k +  1 k l ,: k k iR (3 .5 3 )
k 'k ki jk ki

in which

A
FI -, pE FN

K ik -- j ,i N k, dA (3.54a)

P = ?7rR N NE N E dA F (3.54b)
jk A

EJk = -R f Mk(&,n) WE (E,n)dFrdn (3.54c)

area

R = -2rR NEedAE (3.54d)

A

The weiqhtinq function W is aven by
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W(E I )2 3 dxdy (3.55)I (x - )2 + (y - n} +"/

A change of the sequence of inteqrattons in the Galerktn formulation of

the inteqral term in Eq. (3.51) has been applied to obtain the weighting

function WE Because of the numerical difficulty associated with the

sharp variation of the kernal function in Eq. (3.55), the weiqhtina

function is calculated analytically within each element and numerically

outside the element. Eq. (3.54c) is then intearated entirely by numerical

quadrature.

The formulation in Eqs. (3.54c) and (3.55) is in terms of the global

coordinates through the global position of the source point (&,n). To

simplify the integration, each element is first mapped onto a standard

triangle through a rioid body translation and rotation. A linear channe

of scales of the axes is then performed so that the standard triangle is

independent of the coordinates of the nodes of the element beina mapped,

and the coordinates of the source point appear only as parameters in the

analytical integration. The same form of the integrated result may then

be used for all the elements in the finite element mesh.

Since NE is quadratic, six basic integrations with numerators 1, x,
j

Y, x2 , xY, and y2 in Eq. (3.55) need to be performed. These integrated

results are used to form the weighting function. The six integrations,

the weightinq function WE, and the element matrices [KEI and [PEI are

detailed in Appendix B.

The resulting global matrix is again complex, nonsymmetric, and fully

populated. Local, nonlocal, and imaae solutions can be calculated just as

in the one-dimensional case. Eddy currents can he calculated through
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numerical differentiation, and magnetic pressure and temperature evaluated

after the stream function is solved.

A Fortran program EDDY2 has been developed based on the formulation of

Eqs. (3.53) - (3.55). It calculates the local and nonlocal solutions of

stream function, eddy current, temperature, and pressure. As of this

writing, the image solution and two-dimensional graphic output capabilities

remain to be implemented. Uniform magnetic field and fields due to any

number of mannetic dipoles can be handled. Magnetic fields generated from

other types of coils of interest can be added readily. The capability of

analyzing for multiple frequencies also remains to be implemented.

The geometry of the plate and the description of the external maqnetic

field are the two basic forms of data needed by orogram EDDY2. The total

numbers of nodal points, load cases, and elements need to be specified.

Coordinate and boundary condition must be given for each input node.

Intermediate nodes may be generated for any groups of nodal points that

are uniformly spaced. Element information may also be generated. Although

only six-node triangles are included in the present version of EDDY2, the

program has been structured so that other types of elements may be added.

Element group information and the master card for each element group

therefore need to be input too.

The program allows for different orders of numerical integrations.

Six- and seven-point formula are now provided. The order may be specified

on the master element qroup card.

Presently two types of magnetic fields may be analyzed: the uniform

field and the magnetic field due to any number of dipoles. For uniform

field no other information is needed. For dipole field the positions and

the relative strengths and senses of each maonetic dipole must be given

I. . .. . - .. . . . . i . - ,
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subsequently.

Values of the stream function, eddy current, temperature induced in

a half cycle of the current, and time-averaged magnetic pressure are

produced as output. The stream function is calculated at the nodes of

the finite element mesh. Current, temperature, and pressure are evaluated

at the centroid of each element. The stream function and current are

calculated in complex form. The modulus and phase angle of the current

are evaluated in the interest of spectral analysis for the calculation of

transient currents.

3.4.2 Numerical Results and Experimental Verifications for Finite Plates

The two-dimensional finite element code EDDY2 has been verified for

a limited number of problems involving uniform applied fields. The

numerical results from EDDY2 have been checked with both analytic solutions

and numerical calculations obtained from other methods. Infrared measure-

ments are also used to verify the results qualitatively. More extensive

verifications are needed to check the full capabilities, but comparison

results for fields other than uniform are scarce except for low Reynolds

number (local) cases.

The following objectives have been met with the program EDDY2 up to

this writing.

a) Comparison of low Reynolds number results with the analytic

solutions,

b) Comparison of low and intermediate Reynolds number results

for long plate with the numerical results from program EDDYI.

c) Comparison of low Reynolds number results for a square

plate with edge crack with the BIEM numerical results and

infrared measurements (Ref. 102).



133

d) Dimensional analysis of the size effect of the width of a

square plate.

Each of these is described separately below.

a) Comparison of Low Reynolds Number Results with the Analytic

Solutions. In the low Reynolds number limit one may drop the nonlocal

terms in Eq. (3.51) and obtain the local theory for the stream function

in the two-dimensional case,

2 i2Re(x,y) (3.56)

The solution of the above Poisson eauation is a common practice in many

physical problems. For the uniform normal external magnetic field, the

problem is analogous to the torsion of a shaft in the theory of elasticity,

for example. For a square and rectangular plate in the low Reynolds

number limit,the EDDY2 solution has been checked with the series solution

for torsion of rectangular shafts. The aqreement between the stream

function and current density in one case and the stress function and shear

stress in the other is excellent.

b) Comparison of Low and Intermediate Reynolds Number Results for

Long Plate with the Numerical Results from Proaram EDDYI. For a long

rectangular plate excited by a harmonic uniform field with the Reynolds

number R = 0.Ol2,EDDY2 gives the stream function contour shown in Figure

3.35. Across the middle section of the long plate, the problem is

essentially one-dimensional and may be approximated by an analysis with

EDDYI. The close correlation between the two calculated induced currents

across that section from EDDY2 and EDDY1 are shown in Figure 3.36.

For the intermediate Reynolds number case (R = 0.2 in EDDYl), the

comparison between the stream functions calculated from EDDY1 and EDDY2

.. . I- . . . , ' ' , - S. .4 _ .. A 
* :

- L.



134

124

C)

00

4-

C).-
0

*~zz

C)
LI)
n
-4-'

12o 0h

-AL- -. 14



135

bLI 2.0

% B
N1.5

1.0

0.5

x/h
I Ii

-60 -40 -20 0 20 40 60

-0.5-

-1.0- (--So ~e/

- 1.5-

-2.0

Figure 3.36 Comparison of one- and two-dimensional solutions
of currents induced across the middle of a long
rectangular plate by a harmonic uniform field
(R = 0.03 in EDDY1).

-...



1 36

are shown in Fiaure 3.37. The EDDY1 results are obtained with ten linear

elements over the half-width of the plate, while the EDDY2 results are

from a single quadratic element over the same distance,the aareement

between the two should be therefore reasonable considerina the difference

in the discretization.

c) Comparison of Low Reynolds Number Results for a Snuare Plate

with Fdae Crack with the PIEm Numerical Results and Infrared M4easurements.

The flow of induced current around an edqe crack in a square plate is

calculated using the two-din-:nsional code in the large skin-depth limit

for a few notch widths. A uniform applied mannetic field is assumed in

these calculations. The stream function contours for one case are shown

in Figure 3.38. These contours show the flow of current around the crack

tip. Contours of constant temperature are also shown in Figure 3.39.

The infrared measurements of the induced ohmic heating on the same nlate

but induced by a wire-source field are shown in Finure 3.40. The tempera-

ture or J2 hot spot near the edge of the crack or slit is clearly shown.

The same hot soot is predicted in the FE results, Figure 3.39, for the

uniform maanetic field.

Ouantitative comparison of the numerical and experimental results is

difficult in this problem because of the difficulty in creatin a uniform

field within a sufficiently larce reaion with the present experimental

facilities. However, the FE results have been compared with the numerical

results obtained from a boundary integral equation (RIE) code developed by

Mukherjee (Ref. 84). This code has originally developed to solve for

stresses around a crack. The comparison of the stream functions calculated

is shown in Figure. 3.41. Close aareement is obtained between the two

numerical results.
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Figure 3.38 Stream function contours for a notched plate
excited by a harmonic uniform field (notch-
width =2h, R =0.001).
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I Figure 3.39 Isotherms for a notched plate excited by a
harmonic uniform field (notchwidth =2h,

R 0.001).



140

Figure 3.40 Infrared thermogram showing hot spots due to eddy current
flow: (upper) plate without crack, (lower left) hot spot
due to flow around a crack, (lower right) color quantized
hot spot at top of crack (magnified).
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Figure 3.41 Comparison of eddy current stream lines for a notched
square plate in a uniform field computed by boundary
integral equation method (BIEM) and finite element
method (FEM). (Notchwidth 22h, notch length =40h,

plate length = 120h).

* *



142

The BIEM code used in this problem basically solves the Poisson

equation (3.56). Compared to the prooram EDDY2 in the low Reynolds number

case, it has the advantaoe that only boundary elements need be used. This

much reduces the number of eauations to be solved. But the extension of

the BIE method to include the nonlocal effect cannot be easily achieved.

d) Dimensional Analysis of the Size Effect of the Width of a

Square Plate. For a souare plate with different width/thickness (D/h)

ratios, the program EDDY2 was run by Hara (Ref. 83). By using

the original definition of the maanetic Reynolds number and the FE mesh

shown in Figure 3.42, one obtains the relations between the modulus of

the current at the centroidal points of the elements versus the parameter

R for different D/h values. The exciting maanetic field is assumed uniform

here. The moduli of the current at all centroid points of the elements

therefore have the same value.

By usina a different definition of the Peynolds number,

R I D ) R=I(ODh (3.57)

one obtains the curves shown in Figure 3.43. At small RI values these

three curves correlate to each other well, but the differences bean to

grow as the RI values increase.

By usina the same curves shown in Figure 3.42, but another definition

of the magnetic Reynolds number RTT,

R = (0)2 R- (35R)

one obtains the curves shown in Fiaure 3.43, which show a much better

correlation for the hlah RI I values. However, the aareement is still

not as close as that obtained for the one-dimensional plate, Figure 3.20.
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D/h z10 Dh4

I .0-

0.5

0 4 8 1R2  I2 16 20

Figure 3.43 Modulus of the induced current density at the element
centroids vs. the modified magnetic Reynolds number

RI = (D/h)R = Dh/(47T6 2) for a square plate subject to
a uniform transverse field.
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This rounh Parameter study shows that the number of nondimensional

parameters for the finite plate is more than one, and that they are

probably related to each other in some fashion that cannot he revealed

by the simple chances of parameter, Ea. (3.57) and (3.58). More detailed

dimensional analysis is suonested to study the size effect of a two-

dimensional plate.
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Chapter 4

LINEAR VIBRATION OF INFINITELY LONG, MAGNETOELASTIC PLATES

The magnetically induced vibrations of infinitely long conductina

plates are considered in this chapter. The plates have constant span i

along their infinite length. The exciting traonetic fields considered

are invariant in space in the lenqth direction. The equations oovernina

the coupled system in this case are Equations (2.104) and (2.1n6). The

finite element formulation used for analysis is presented in Section 4.1.

The stacqered transient analysis is applied to the two coupled equations.

The computational procedure is described in Section 4.?. Numerical

results and experimental verifications are presented in Section 4.3.

The various coupling effects are discussed in Section 4.4.

The study described in this chapter has been limited so far to small

transverse flexural motion of plates subjected to pulsed magnetic fields.

The in-plane force effects are not included. The total coupling effects

and the influence of static, uniform magnetic fields on the free vibrations

of the plate are left for future investigations. The couplinc effect

through rotational motion is also left for further studies.

4.1 Basic Equations and Finite Element Formulation

The governing equations for infinitely lonq conducting plates subject-

ed to excitina maonetic fields invariant in space in the length direction

are derived in Chapter Two and are Eqs. (2.104) and (2.106). In this

chapter the coupling effects in the induced vibrations are limited to the

147
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transverse motion of the plate. The governino eouations for this case

are the following specialized versions of Eq. (?.104) and (?.106b):

2 O oh fIt 9 (x')
- o + ( 2  dx'

o

a Zo 2 2 WBO)I

h t (4.1)

and

D w + ph w  B°  (4.2)T 7 X x

In both equations the couplina effects appear on the riaht-hand side only.

The same finite element formulation procedure as described in Chapter

Three is applied to Eq. (4.1) and results in

L [A] - (l-e) [s] ) {o)
At tA

L [A] + e [s] ) {pt + e {RI + (l-e) (R)
At t t t+At (4.3)

where [R) is aiven by

R. = h NE , z ' (.w 80)j dx (4.4)
31 7Ft 2 Tx t x

All the other finite element matrix and vectors are the same as defined in

Section 3.3.

The transverse deflection w in En. (4.?) is annroximated by the usual

cubic model

IL JI
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4~ E ()
Ck wk LC J W (4.5)

k=l

where

=LW 6 1 W 2 621 (4.6)

and

C E 1 + 2& - 3&2 CE -x (&-1) 2

1 2

C 3 3Z - 2E C -x ( 2 . ) (4.7)

with

= X/LE

The followinq matrix eouation of motion is ther ohtainpi

[M] fwi + K] {wi = {F} (4.S)

in which

IF) (C) l B dx (4.0)
X x

Usino +he Newmark Inteqration scheme (Ref. 100), one has

[KI {w t+At F+At (4.10)

where

(KI = a [M] + (K] (4.11a)

IFlt+tt IF} t+At + [Ml (a0 (wit + a2 (wt + a3 {w)t) (4.11b)

with

11
a a?
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1

a3  F -

6> 0.50 a > 0.25 (0.5 + 6)?
1 1

The trapezoidal rule is used for all the studies with a : and 6 .

4.2 Staggered Transient Analysis and Computational Procedure

The equations (4.1) and (4.2) may be solved simultaneously in principle.

In that case, the discretized equations will have the followino form

[A] f;} - [s] {0) = {R} - [D] { } (4.12a)

[M] {w) + [K] {w} = [P1 Wi} (4.12b)

where

{RI = oh I -Bdx (4.13a)

E CE Er
[D] = h Bo dx + oh {N tC j -- dx (4.13b)[D h {NE} A --j x N~

[P] = ( cE I[NEI 0 dx (4.13c)

E

Define a state vector {A} with

(A}T . Li wj (4.14)

Eq. (4.12) may then be put into the following form

{A* *} + [D1 {} + [il {A) {-R (4.15)

where

!t'
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EQ. (4.15) may be intearated directly to aive the solution simultaneously.

There are several disadvantages of the simultaneous solution scheme

however. Besides the inefficiency of the solution of a larner, unsymmetric

matrix equation, the same finite element mesh must be used for both sub-

systems for the treatment of the couplinn terms. Since a finer mesh

usually has to be used for the maanetic subsystem, this will result in an

excessive number of structural elements for the coupled problems. The

other consideration is the different time characteristics of the maanetic

and mechanical subsystems. Since it is the structural response rather

than the stress wave motion in the structure that is of interest in this

study, one would like to know the ranqe of the frequency of the field with-

in which the mutual interactions are important. At hiaher frequency of

the drivinq field, one n'ay prefer different time steos for the two sub-

systems because the magnetic force will be more like an impulse to the

structure. For these reasons a staaaered solution scheme is attractive.

Since the two qovernina enuations are only weakly counled, this approach

is feasible and is adanted in this work. Different hut conformable meshes

are used for the two subsystems. The solution state of the counled problem

is advanced by sequentially executina Equations (4.3) and (4.10). The

interaction terms appear in each as an external force effect. Temporal

predictors may he used to calculate these force terms more accurately

(Ref. 85). In the present study, no predictor is used. The accuracy is

improved by usina a smaller time step.

A Fortran program EDDYBEAM has been developed for the linear vibration

of infinitely lona plates. The computational scheme employed is basically

a combination of the transient eddy current procram FDDY1T and the struc-
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tural analysis proaram BEAM. Different levels of couplino of these two

proarams may be specified in the input. The functions of these nroqrams,

which use different but conformable finite element meshes, is shown in

Figure 4.1.

The first phase of the proqram is the initiation of thp two sub-

proarams EDDYlT and BEAM and the specification of the type of couplinn.

If the oarameter LINK=O, the proaram provides the transient eddy current

calculation only. If LINK=l, the mannetic force calculated on the rigid

plate is used in the structural analysis pronram. The XxB effect on the

eddy current will not be considered. If LINK=?, two-way interactions are

included and the solution corresponds to the coupled problem referred to

the initial undeformed position of the plate. For LINK=3, the vector fR1

in Eq. (4.4) is calculated on the deformed position of the nlate at the

previous time step usinn the unit normal vector of the undeformed olate.

The maqnetic force calculated is still applied to the orininal nosition of

the plate for the analysis of the structural response. A limited follower

force nature of the maanetic force is then obtained in the analysis. The

results obtained from the different levels of couplina between the two

subsystems serve to irdicate the relative Importance of the various inter-

action effects.

The major computational task is performed by the pronram EDDYlT. As

shown in Figure 4.1, this computation consists of the time intearation of

the eddy current diffusion equation. At each time step, the induced current

I and magnetic force F are calculated at each integration point. They z
maqnetic forces are then transferred to the structural analysis proaram

BEAM. The maonetic forces are intearated numerically and the effective

consistent nodal force vector calculated to nive the displacement at the

- - • , .. .
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Indicate type of analysis
EDDYBEAM

LINK =0, 1, 2, 3:

Initiate EDDYlT, BEAM

EDDYlT Tim+,e matchingB

tu = t U+AtA

j Calculate Vx effect

Calculate rate of change

of B0;

Solve for n+l, Eq. 4.3;

Compute ly D/

F I - I 0y

=0

Figure 4.1 Computational
Scheme of EDDYBEAM
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BEAM

Solve for W n+l, vn+, n+l

Eq. 4.10

Figure 4.1 (Continued)
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new time step. The Vx values are then evaluated at the intenration points

by interpolation. If the chance of distance between the plate and coil is

considered (LINK=3), the calculation of VxR is nerformed at the new nosition

of the plate. The same alternative is applied to the calculation of the

rate of chanoe of the external maonetic field These calculated

values are then used to beain the next time step.

In addition to the input information described in sub-subsection 3.3.1.h

necessary for the transient eddy current calculation, qeometric and material

attributes for the structural problem must be input if LINK is not zero.

Since a finer mesh usually is needed for an accurate calculation of the

induced current and force, different but conformable meshes may be used for

the maonetic and mechanical subsystems. The conformability of the two

different finite element meshes is achieved by dividino each structural

element into several enual-lenoth field elements. The number of divisions

may be different for each structural element and must be inPut as part of

the mesh information.

The same size of time step is used for the calculation of both the

maonetic and mechanical subsystems. A lumped mass matrix is used for the

mechanical problem. Initial conditions and mechanical loads may be input

to the proqram. Mesh ceneration and plottina capabilities for the time

history and spatial variation of displacement and bendina moment are

provided as options.

The output from the EDDYIT portion of the nrooram is described in

Chapter Three. In addition, disolacement velocity, and acceleration at

each structural node tocether with the bendinn moment at specified points

are produced as output of the subproaram REAM. These are printed out after

the output of the subpronram EDDYlT for each time step. Displacements and
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bendinq moments may be plotted usino a library subroutine if the plottino

option is chosen.

4.3 Numerical Results and Experimental Verifications

The program EDYBEAM has been applied to the maanetically induced

vibrations of aluminum and stainless steel (SS 304) plates. The properties

of these two materials are listed below.

Material o (AmD/Volt.m) , (N/Amp2) p (N.Sec 2/m4 ) ,E (N/m?) v

aluminum 3.8n x l07  4w x 10 7  2.7 x l03  7.0 x 1l0 0n.34

SS 304 1.39 x 106 4w x l0 7  8.0 x lO3  2.0 X IOl1 0.3n

The study so far has been limited to single Pulsed currents. To have

sufficient interaction time, the time characteristics of the electro-

magnetic and mechanical subsystems are compared below for cantilever plates.

The information is used to design meaninoful numerical and experimental

tests.

Let fn = freouency of vibration of the nth mode of the plate, and

fE = frenuency of the drivinn current in the coil.

Then

f K 2  Kn h
n n h12

K 
2

Kn2  V/ h) (4.16)

in which E is the effective Youno's modulus for lone plates. Let the skin

depth 6 be N tiTnes the thickness of the plate h,



2 N~2 1

fEEf ,EN 1 (4.17)

Matching the two freauencies, f f one obtainsn

2 1 N 2K 2 h (4.1P)

2 17

The length and thickness of the plate for different combinations of mode and

skin depth/thickness ratios are shown in Table 4.1. The followino K valuesn

are used in the calculation of the tabled values (Ref. 86).

n 1 2 3 4 5 6 7 8

Kn 1.875 4.694 7.855 ln.1o6 14.137 17.270 20.4? 23.562

The freauencies and half-periods of the oscillations for both the macnetic

field and the structure correspondina to the values in Table 4.l are calcu-

lated in Table 4.2. The problem tested is determined by choosino suitable

length and thickness so that the freouency of the driving current matches

that of the vibrating beam for a selected mode.

The transient eddy current proaram EDDYIT has been verified in Chanter

Three. The structural analysis program BEAM has also been tested for

several dynamic problems. One problem tested is the free vibration of a

simply supported beam subjected to a sinusoidal initial velocity shown in

Figure 4.2. With four beam elements for half of the beam and intearation

by the trapezoidal rule version of the Newmark method, the results show

qood agreement with the theoretical solution for both choices of time

step, although for At = T/20 some period elonoation (I T%) is apparent.

The coupled problems studied have the neneral arrannement shown in

Fioure 4.3 with one excitinq wire. One problem analyzed is for an aluminum

-j~. * ) ,



Table 4.1 Length and Thickness for Different Combinations

of Mode Shape (n) and Skin Depth (N = 6/h)

Aluminum (Ae) ,o = 47.78 Sec/m , * -= 5OQO 47/Sec

h t_ (Mm.)

1.0 1 11.11 22.?? 33.33 d4.44 1;5.55

27.81 .6? 83.43 lI.?4 139.05

3 46.54 Q3.NP 13q.6? 186.16 23?.7n

1.5 1 20.41 40.8? 61.23 81.63 102.04

2 51.0 Q  102.18 153.28 20A.37 ?55.46

3 P5.50 171.00 256.40 3d1.00 427.40

2.0 1 31.4? F2.qA 04.?6 125.68 157.1n

2 78.66 157.3? ?35.Q8 314.64 303.31

3 131.63 ?63.?7 34.90 526.53 r5p.16

SS 304 o= 1.F Sec/m', ,7 5000 M/Sec

h F (mm.l

(Mr.) I 1 3 4 5

1.5 1 3.03 7.85 11.78 15.70 '.63

? 0.83 1Q.66 ?0.40 q .14

3 16.4, 32.00 40.34 65., 8i.24

2.0 1 6.04 1?.OQ I.13 24.18 30.2?

2 15.13 30.26 45.40 60.53 75.66

3 25.32 51.64 76.0n 101.?0 126.61

2.5 1 8.45 16.90 25.34 33.70 62.24

2 21.15 42.30 63.44 84.50 1n5.74

3 35.3Q 70.7P I6.17 141.55 176.04

* .



Table 4.? Frequency and Hailf-period of Oscillatiin for Different

Combinations of Thickness (h) and Skin I'enth (N = 6h)

Aluminum (At) rn=47.7P Sec/rn?

h f *(1/sec) / td + (nisec)

(mm.) 123 4

1.0 f 6.66xin 3 l.F7xlO 3  7.40x002  4.1x10 ?.6FXl0 "

t d .075 0.300 0.675 1.201 1.87E

1.5 f ?.0)6xlO 3  7.40xln? 3.?Qxlo2  1.psx102  1.18x102

__ _ td 0.169 0.675 1.5? ?.70? 4.??

2.0 f 1.67x003  4.l6x102 ? .85x002  1.04x10 2  6.66x(' 1

____ tdj 0.300 1.200 ?.702 4.803 7.505

SS 304 to 1.F n/Spc 2

h f *(1/sec) / td+ (r'sec)

(nin.) 12 3 45

1.5 f 4.44x10 l .11x00' 4. qAXlo ?.7Px1(' 1.7ftx10

____td 0.001 0.005 0.010) 0.018OO?

2.0 If 1.11xl0 5 ?.79xl10 4  l.?3xln A F6.041O 3  4.A4xlO0

td 0.005 0.018 0.041 0.072 0.113

2.5 f 2.F3xl0 7.07x00 3.14x0 3  1.77x00 1.13x103

td 0.018 0.071 0.159 0.?83 0.4?

*f f E

1+ td =- pulse duration
2f

Note: f ncan be made enual to f by adjustinn the lenath t..
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Figure 4.3 Long, cantilever conducting plate:

Z,6A

(a) Isometric view, single wire,
(b) Section, single-wire exciting coil.



plate with 9 = 427 mm, a = 335 rmi, h ?.I m, and e = P.1 mm. The excit-

inn wire is purposely placed above the nodal point of the second vibration

mode of the cantilever plate. Recause of the much sharper variation of

the electromagnetic field variables, more field elements than beam elements

are used In the analysis. The meshes of the two subsystems are made con-

formable by dividino each beam element into several equal-lpnoth field

elements as shown in Finure 4.4a. The freoupncies and neriods of the first

three modes of the plate in this problem are:

N 1 2 3

f (1/sec) 0.51 59.6F 166.P7
(sec) P.105? 0.0168 .60

A half-sine pulse with 3 ms pulse duration and a 50n Amp drivino current

has been chosen. The pulse duration is made ecual to half the neriod n'

the third mode of vibration. The results of the analysis are shown 4r

Fioures 4.5 and 4.6 and will he discussed in the next section.

Experimental verification has been attempted on a finite lenoth ba"

plate with the same cross sectional properties and the arrannement of the

excitino wire. This attempt failed, however, because of the small lenoth-

to-width ratio of the plate used in the experiment. The size effect on

the eddy current distribution was investicated experimentally (Ref. 101).

The affected distance from the ends of the plate was found to he about

enual to the width of the plate. A new confiouration that can be better

simulated by the one-dimensional analysis was then desioned. The numerical

and experimental results for this second confinuration are described below.

.. .........
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Figure 4.5 Nonlocal predictions of eddy current density, magnetic
force, and transverse displacement at t = 0.9 ms for
cantilever plate with single-wire exciting coil,
Figure 4.4(a).
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Figure 4.6 (a), (b) Induced current and force under the wire during
the pulse duration, (c) vertical displacement at node 6
in Figure 4.4(a) during 1/4 the period of the first mode.
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The new plate has a lennth/width ratio about 4.? and is shown in

Figure 3.31. The dimensions of the new configuration are 9 14Q mm,

a = 117 mm, h = 1 mm, and e = 4.q mm. The transient eddy current calcula-

tion is first verified for this new configuration using the search coil

technique for e = 11 mm. The results have been prespnted in subsection

3.3.2. For the coupled problem, the finite element meshes shown in

Figure 4.4b with e = 4.5 mm are used for analysis. In the experiment,

two low inductance strain aaoes are applied at the position of node 3 in

Figure 4.4b. The time history of the bendino moment recorded is compared

to the calculated result as an exrerimental verification.

The freauencies and periods of the first four modes of an infinitely

long cantilever plate with this thickness are

N 1 2 3 4

f (1/sec) 37.6 236 660 100

T (sec) 26.6xi0 3  4.24x1( "3  l.5lxln - 3  n.77xlO 3

In the free vibration test of the actual finite-length plate, the same

frequencies and periods have been observed.

Three different pulsed currents are used to study the induced motions

of the plate. The study of pulsed problems has been motivated by notential

applications in magnetic forming, pulsed electric magnets, and structural

problems in hiqh energy devices. The durations and currents of the drivina

pulses are

Pulse No. 1 2 3

I (Amps.) 2700 7noo 800

td (sec.) 5.0xlO- 3 2.5xi0 -3 l.2xln 3
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The actual pulsed currents are input numerically into the prooram [)DYBFAM.

The calculated bending moments at the position of the strain aaqe are

compared with the measured values for each case separately. Fioures 4.7,

4.9, and 4.11 show the calculated bendino moments for the first, second,

and third pulse, respectively. Figures 4.P, 4.10, and 4.1? show the

recorded voltage readings from the strain cages for each of the pulses

used. These voltane readings have been calibrated and compared with the

numerical results. The discussions of these numerical and experimental

studies of the coupled problems are niven in the next section.

4.4 Couplina and Nonlocal Fffects

Because of the many geometric, material, and time parameters involved,

the dimensional analysis of the transient coupled oroblem is more difficult

than that of the steady-state problem and has not been attempted yet.

However, from the limited number of Problems studied in the last section,

some conclusions about the various coupling and nonlocal effects may he

drawn.

The results shown in Finure 4.6 for the first Problem indicate that

the velocity and displacement of the conductina plate both have a dampina

effect on the maanetic and mechanical subsystems. The magnitudes of the

current, force, and displacement have been reduced and their Phases changed,

as can be seen in Figures A.5 and 4.6. The dampina also reduces the energy

transfer from the magnetic subsystem to the mechanical subsystem. The

efficiency of the energy transfer may be obtained by calculatina the power

supplied by the current source and the total kinetic and strain energies

of the plate. An indication of the influences of various couplinn effects

on the energy transfer may be seen from Fieure 4.6c which shows the lonn-

,.. .
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Figure 4.7 Comparison of the numerical and experimental
results of the bending moment at node 3,
Figure 4.4(b), for the 5 ms pulse.
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Figure 4.8 Low inductance strain gage readings for the
5 ms pulse for two different time scales.
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Figure 4.9 Comparison of the numerical and experimental results
of the bending moment at node 3, Figure 4.4(b), for
the 2.5 ms pulse.
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Figure 4.10 Low inductance strain gage readings for the

2.5 ms pulse for two different voltage and

time scales.
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Figure 4.11 Comparison of the numerical and experimental results
of the bending moment at node 3, Figure 4.4(b), for
the 1.2 ms pulse.
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Figure 4.12 Low inductance strain gage readings for the
1.2 ms pulse for two different time scales.



time solutions of the disnlacement at node 6 (x = 3 mm). When the

displacement reaches its maximum value, the enermY density of the

mechanical subsystem consists entirely of strain enerov. The effects of

the various couplinos in reducino the total enermy density At that noint

is obvious from the fioure.

The nap distance between the wire and the mid-plane of the plate is

approximately four times the thickness. The skin depth of a steady state

current with the same neriod will be three times the thickness of the

plate. The small nap distance and the nonlocal effects tend to concentrate

the macnetic force at the nodal point of the second vibration mode. As a

result, the induced motion of the plate consists mainly of the first and

the third modes. The superposition of the third mode on the first mode is

clearly shown in Fiaure 4.6c.

The nonlocal effect is still sinnificant in this problem. The non-

zero averane pushino force can he easily seen from FiOure 4.6b. A pullino

force is developed close to the end of the pulse. Sinre the time variation

of the mannetic field determines the induced current and force, it is

possible to desion a drivina current to nenerate a lame rullino force,

instead of a pushina one, on the conductor.

Three different drivin currents have been applied in the second

problem. Since the position of the strain nane is far away from the wire,

the effects of the various kinds of couolinn are indistinauishable and

only one curve is plotted for each case. qood nuantitative agreement has

been obtained in all cases. The auantitativw difference is small in the

lono pulse duration case and laraer in the shorter pulse duration cases.

The differences may be partlv caused by the flexibility of the clamped

end sunport. The correlation between the numerical and experimental results

.* 1 -



is considered acceptable in an experiment of this kind because of the

end effects of the finite-lenqth plate, the neolect of the structural

and rotational maonetic damnino, the finite size of the strain oaoe and

the excitin wire, and the precision of the experimental measurements.

These comparisons verify the model and the numerical results of the

coupled problem.

The lenqth of the pulse duration has an obvious effect on the mode

of the induced vibration. In the 5 msec pulse duration case, mainly the

first vibration mode is excited as can be seen from the oscillascope

pictures, Fiqure 4.8. As the pulse duration decreases, the participation

of the hiaher modes increases as shown in Finures d.10 and 4.12 durinn

half the period of the first mode of vibration. Note that in Fioure 4.11

some higher frenuency peaks in the experimental result cannot be represent-

ed in the numerical result. This is because the same finite element mesh

is used for all three pulsed currents. To represent those hioher frenuency

peaks more accurately, more beam elements would need to be included in the

finite element mesh.

A schematic comparison of the pulse duration and the third mode

period has been included in Finures 4.7, 4.9, and 4.11 to demonstrate

this effect. More hioher frevuency modes will be excited as the pulse

duration further decreases. The mannetic force in this case will act

more like an impact. The nonlocal effect will also be more important as

the short pulse includes more hinh freouency components. The nonzero

averaned pushino force from the ronlocal effect durino the pulse duration

serves as the impact force in such a case.

A quantitative description of the effect of pulse duration on the

inducel vibration is difficult to draw from these studies presented. fne

U



reason is that the current I-, voltanep-centrolled and a different amount.

of enemyv has been applied for each nulsedI current. To study the effect

of Pulse duration on the distribution of enemyv transferred into dliffert

vibrational modes, the same electromaonetic enerey s hould be innut to the

whole system, and the mutual inductance between the Plate and wire

considered. A parameter stuidy of the effect of Pulse duration can then

be conducted thrOLIab modal analysis of the vibratinoi Plate.

,An estimation of the effect of the difference betwpen the time

characteristics oIF the two subsystem.s on the induced vihration can be

obtained in the followinn sense. The rmaontic force may be Intenratedl

durino the r(ulse dujration and applied en the Plate as an im-pact force,.

The mechanical ronprnv 4, th;s case, w4l 1 he enual to the ,inptic enrpv

in the eoijivalent it 4 ,1' velocity problem-. The mechanical enemyv in the

Coupled Problem '"av~ he calcr.ilated from the kinetic and elastic eneroies

of the Plate after *he nujlse hac. been applied . Since In the very short

pulse case the induced Pddv cur-rent will screen the applied maonotic field

out, the maaoptic Fer-P will act mrer 14~ a maocnetic rpessure as the pulse

duration decreases. The comparison hetween the two mechlanical enemries

thuIs calculated versu- the ratio of pulse duration to various; fundamental

periods of vibration may indicate the effect of rul-e duration on the

induced vibrations. A more rinorous study (if such effects hhul e based

on the enemyv conversion between the maonetic and mechanical subcvstems-

based on the samre enet'v input, as, described in the last narilraph.

The study of the coupled nroblemrs in this chanter hK beer llriite

to the case of one excitinn wire. The various ceiplino and nonlocal

effects are of course problem dpendent and should be invr'stinated for

other types of applied field. !-'any different type, of rannetic fed
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however. can be oenerated from sunerpositions of thp one-wire fields.

The study of the one-wire problem thus serves as a prototype for future

studies.

., a

4 - 4



Chapter 5

NONLINEAR VIBRATION OF INFINITELY LONG MASNFTOFLASTIC PLATFS

The magnetically induced vibrations of infinitely lono conductino

plates with finite deflections but small rotations are considered in this

chapter. Beside the interest in studying the motion-dependent nature of

magnetic forces, such studies may find applications in mannetic formina

or in devices like mannetodynamic circuit breakers. Moreover, aeometrlc

nonlinearities must be included for investlnations of structural

stability.

The plate and the excitina magnetic field treated have the same

general arrangement as in Chapter Four. The enuations novernina the

coupled system now are Eouations (2.102) and (2.66) to (7.67). The basic

equations and the finite element formulation are presented in Section 5.1.

An incremental-iterative procedure is suggested in Section 5.2 for the

coupled nonlinear transient system. The imnlementation of the procedure

in this study, however, met convergence problems because of the interac-

F tion between the time integration operator and the approximate solution pro-

cedure for the equations of motion. These difficulties are discussed in

Section 5.3 together with some successful results obtained for static,

nonlinear elastic problems.

5.1 Basic Equations and Finite Element Formulation

The linearized enuations of motion covernina the nonlinear mechanical

system are

178
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ftv r ays ea SeY6 tdV + tv t a 6n tdV- t+AtR -tyt G eas tdV

(2.66a)

t+At t+At t t t+tt
R =ft A  tt u adA + ftV tP (t+Atfd )  V U v  (2.66b)

A nonlinear beam element developed by Bathe and Bolourchi (Ref. 87) is

used for the updated Lacrangian (UL) finite element formulation. The

components of displacement increment are approximated by

6

ui k E h k uk 1 1,2 (5.1)
k~l

in which the h are the interpolation function for the kth node in the

element and the uk are the nodal point displacement increments in the local

axes at time t, Equation (5.1) is used to evaluate the linear and nonlinear

parts of the strain tensor in En. (2.66) for each element. The formulation

procedure results in the following incremental finite element stiffness

equations

(ItKLI + [tKNL]) (u) - {t+AtR) - {tF) (5.?)

Lin which (tKL. I[tKNL] are linear and nonlinear strain incremental stiff-

ness matrices for the confiouration at time t, (t+AtR) is the vector of

inertial effects and externally applied nodal loads at time t+ht; and

S{ tF) is the vector of nodal point forces equivalent to the element stresses

at time t.
It

The linear stiffness matrix [LK1I is computed as

[tKL = I tBL IT cI [tB] tdV (5.3)

in which [tBL] is the linear strain-displacement transformation matrix for

the configuration at time t, and CC] is the material property matrix.[tKL

L
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is the same as the usual linear beam stiffness matrix (Ref. PS).

The nonlinear stiffness matrix t KNLI accounts for the nonlinear

effect of the stresses at time t and is calculated hy

t tKNL [ tB NLITrtrI [tNLI tdV (5.4)

in which [tBNL is the nonlinear strain-displacement transformation matrix,

and [tT j is the matrix of Cauchy stresses in the confiouration at time t.

The vector of nodal point forces(tF) accounts for the linear effects

of the stresses at time t and is computed by

FtF) = 1t tL]{t; tdV (5.5)

in which {t ) is the vector of Cauchy stresses in the conflauration at

time t.

The vector of externally applied nodal loads {t+AtR) for the confioura-

tion at time t+At is obtained by the finite element evaluation of Eq. (2.44)

usinq Eq. (2.66b). The deformation dependent nature of the force is pro-

posed to be treated in an iterative way in the computational procedure.

Details of the various element matrices and vectors are presented in

Appendix C.

A moving curvilinear coordinate C is introduced on the mid-surface of

the plate for the eddy current problem, Figure 5.1. As a first step in the

study of the geometrically nonlinear coupled problem, the self-field effect

is neglected. Eq. (2.102) in this case becomes for one-dimensional

problems:

2 3oh 3--- q ( )z ] (5.6)

~I
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et

Figure 5.1 Fixed and moving coordinate systems on
the mid-surface of a cantilever plate.

:.~ It~ iterationjth iteration

jth_lI iteration

Figure 5.2 Configurations of a cantilever plate at
three consecutive iteration steps.
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in which n denotes the unit normal vector on the mid-surface of the

deformed plate.

tsinq the Galerkin formulation and the linear shape function aporoxi-

mation

E 2 F
E N[ k' (5.7)

k=l

one may discretize Eq. (5.6) into

E = (5.8)
" S *k P j

in which

dE dN E

E d C (5.9Qa)

1 (5.9b)

k, After the stream function is solved, the magnetic body force is calculated

from

t0 t+At f s o f + 0
' > " n Zt + C t k 5.0

This expression is used in Eq. (2.66b) for the calculation of the externally

" i applied load vector {t+AtR}.

5.2 Staggered Transient Analysis and Computational Procedure

Except for the deformation-and velocity-dependent maqnetic force, the

solution of Eq. (5.2) may follow the standard incremental Iterative pseudo-

force procedure (Ref. 87). With an implicit time inteqratior scheme, this

involves a calculation of the unbalanced force and an iterative procedure

to achieve the equilibrium amonn the internal element stresses, the

____"____ ___... ................-. -g-- - -
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externally applied nodal point loads, and the inertia force at time t+At

(Ref. 89). For deformation-independent loads, such a procedure is straiqht-

forward. For some types of follower forces, such as pressure loadinns, a

load stiffness matrix may be added to the tanoent stiffness matrix to

account for the deformation-dependent nature of the force (Ref. 90). For

the deformation- and velocity- dependent maqnetic force, this approach is

not applicable. In this work, an updated calculation of the maqnetic

force within each pseudo-force iteration step is sugoested to achieve the

simultaneous satisfaction of both the eddy current eouation and the eaua-

tions of motion. The procedure for this calculation is described below.

Consider the state of motion of the plate atjth iteration shown in

Figure 5.2. The magnetic force has been calculated based on the motion of

the plate at the J-lst iterative step and applied to the confinuration of

the plate at that step. If the unbalanced force calculated is such that a

prescribed convergence tolerance is violated (Ref. 89), the eddy current

equation is solved aqain based on the motion and Position at the J-th

iterative step. The unbalanced force is recalculated with this newly

calculated maanetic force and applied to the configuration at the J-th

iterative step. The same nonlinear stiffness matrix [t KNL and nodal force

vector (tF) are employed in each iteration. The procedure is continued

until the tolerance is satisfied, i.e., until the error in equilibrium or

the change in incremental enerqy is acceptably small (Ref. 8Q).

The trapezoidal rule version of the Newmark method (Ref. 100) is used

to inteqrate the eouations of motion. A ouasi-Newton method is used for

the iterative procedure (Ref. 89). A force and/or enerQy tolerance is

used for converqence checks (Ref. 89). The incremental iterative comnuta-

tional procedure is summarized in Table 5.1.
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Table 5.1 Summary of Incremental-Iterative Intenratlon Procedure

Initial Calculations

1. Form the linear stiffness matrix [KL] and mass matrix [M]; initialize

{0 U), {(o, {o }; form the field matrix [s].

2. Calculate the time-inteqration constants and converqence-tolerance

constants. Newmark method: 0-1.0, 4-0.5, a-0.25

o = l/(At2) a, = 6/(At) a2 = I/(tAt) a3 = I/(2).i

a4 = /c -1 85 a t(s/f -?)12 a6 = a a = a

a8 = -a3 a9  At(l-6) a1 0  6At.

Force tolerance ftol = 0.1 (unless otherwise noted)

Eneray tolerance etol = 0.001 (unless otherwise noted)

3. Form the effective linear coefficient matrix [K] = [KLI + a0 [M].

For Each Time Step

1. Calculate the macnetic field at the new position and form the field

vector ft+Atp); calculate the vector of nodal point forces ftF).

2. Solve the eddy current enuation (5.8) and calculate the induced

current and force on the plate.

3. Intearate and transfer the maunetic force to the structural proaram

and form the load vector {t+AtR).

4. Update [K] for nonlinear stiffness effects to obtain (tKI =

+ [tKNL1 , and trianoularize [tK: [tK) = [L) fD] rL] T .

5. Form the effective load vector Tt+AtRI:

{t+AtR) = (tR} + e ( t+AtR - tR) + IM] (a, {t;) + a, (t ) . [tF.

....... - . . . . -. "5 . , 'T.E Nb. ,- -
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6. Solve for the displacement increment {u).

7. If required, iterate for eauillibrium as follows:

(a) initialize: j=O, {u(o) {u

(b) j = J+l

(c) interpolate the new displacement and velocity and transfer to

eddy current proqram,

(d) calculate the maonetic field at the new position at the same

time step and solve for the maonetic force,

(e) intearate and transfer the maonetic force to the structural

Drooram t form the unbalanced load vector {A t+At (.i)1

(f) solve for the j-th correction to the displacement increment

{A uM ) and update the displacement increment

{u(j )} - {u(il)l + {A uM }
max

() check iteration convernence: fl (A 11A J)I!2/i {RIf 2 < ftol,

and/or TA U(P) T{A t+Ati(J-l)}/ {A u(1)IT{t+AtR()) < etol,

(h) if convergence ful - {u(J ) } and go to R;

if no convergence and limit on number of iterations not exceeded,

go to (b); otherwise, stop the proaram with a messaae to restart

usina a smaller time step size.

8. Calculate new displacements, velocities, and accelerations

} 6 {ul + a7 {tu} + a8 (u}

{t+At.} = (t } +~ a: {t} + l t+At }

t+At t+A

{t+At u = {tu + {u}

9. If required number of time steps have been calculated, stop; otherwise,

go to 1.
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A Fortran program BEAMNL has been developed for the mechanical part

of the problem based on the formulation and computational procedure

presented. Some geometrically nonlinear static problems have been solved

successfully usinq the proaram BJAMNL, but the iteration orocedure for

qeometrically nonlinear dynamic problems experienced some converqence

difficulties. This converaence problem and some limited results obtained

are discussed and presented in the next section. The present version of

the program BEAMNL is briefly described below.

BEAMNL is desioned to analyze linear and aeometrically nonlinear

static and dynamic problems of a linear elastic beam plate. The type of

analysis may be specified by the input parameter NANTY. For nonlinear

problems, the Newton Cotes ouadrature formula is used to calculate the

element stress vectors {tF). The order of the auadrature formula may be

specified in the input data. One load case for a single type of analysis

is handled at each run.

Geometric, material, and load information need to be input to the

program. The number of incremental solutions and number of iterations

allowed must also be specified for the nonlinear problems. Time inteara-

tion constants and convergence parameters also need to be input. The

initial conditions may be specified, if any, (input data 16TVN#O) for the

dynamic problems.

Displacements, velocities, and accelerations are produced as output

of the program. The number of iterations at each incremental step is

also printed out for reference. No plotting capabilities are incorporated

yet.
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5.3 Convergence Problems and Some Limited Results

The linear part and nonlinear static part of the proaram RFAMNL have

been tested and verified throuqh comparisons with analytical and experimen-

tal results. One of the nonlinear static problems studied is the larqe

deformation analysis of a cantilever subjected to an end moment, shown in

Figure 5.3 (Ref. 87). Five beam elements are used for this problem with

Newton Cotes formula of order three in both the lenath and the thickness

direction of the element. Seventy incremental steps are used with eauili-

brium iteration. The force and energy tolerance used are 0.1 and 0.001,

respectively. The calculated response compares well with the analytical

solution within the ranqe of the moment parameter n shown in the fiqure.

nood agreement with the analytical result is exnected for even laroer

values of n. Note that in this problem there is no coupliri between the

axial force and the flexural deformation since it is a oure bendinq problem.

The second problem studied is the large deformation analysis of a

cantilever subjected to an end load, Figure 5.4. Seven beam elements are

used with the mesh finer in the region closer to the support. The deflections

of the beam at different load levels are shown in Figure 5.4. The curva-

ture at the root of the cantilever beam is shown as a function of load in

Figure 5.5. The theoretical and experimental results are from an unpub-

lished study by Pao and Moon of Cornell University. The FE analysis

predicts deflections accurately for tip deflections up to about 60% of

the cantilever span, corresponding to a loading parameter f of nearly 2.0.

The curvature is accurate up to about f - 4.0. Note that in the analytic

results the beam is assumed inextensible, while in the FE results the

effect of axial deformation is included.
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L= 100in
I = 0.01042 in
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Figure 5.3 Moment deflection curve of an elastic cantilever
plate loaded by a moment at its tip.
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Figure 5.4 Comparison of FE and theoretical predictions of the
nonlinear elastic bending deflections of a tip-loaded
cantilever beam.
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Stron couplina between the axial force and the flexure deformation

exists in this problem. When the loading parameter f becomes nreater than

?.5, the behavior of the deflected beam becomes more like an arch. Slow

convergence of the iteration scheme occurs for this situation. At larger

values of f, convergence fails with the present quasi-Newton method.

Stronger convergence tolerances with ftol = lx1O 4 and etol = lxIO- 6

have been used for this structural stiffeninn problem, and a spall time

step is needed for convergence (Ref. P9).

Geometrically nonlinear analysis has been attempted for the laroe

amplitude free vibrations of a simply supported beam. The purpose of the

analysis is to establish the frequency-amplitude relationshin of the beam

and to compare it with the analytical result (Refs.0l, a?). This study is

not successful because the iteration scheme fails to converce within each

time step. The numerical experience shows that the lack of convernence

arises from the high frequency axial vibrations of the beam element. The

large axial forces developed from these axial vibrations cause an increase

of the unbalanced force during the iterative procedure. Attempts have

been made to separate the inertia force effect and the effect of the linear

approximation to the nonlinear equations in the calculations of the ur-

balanced forces, but with the present quasi-Newton scheme all the attempts

failed because of the intrinsic interaction of the time intearation method

with the approximate solution procedure for the eauations of motion.

A quasi-Newton method and structural (i.e., one-dimensional) beam

elements are used in the nonlinear dynamic analysis in this work. A

literature survey reveals that for transient nonlinear analysis all the

works surveyed (Refs. Q3 - 96) whic; use continuum (i.e., two-dimensional

plane stress) elements adopt either a quasi-Newton or the full Newton
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method for iteration. Transient nonlinear analyses usina structural elements

usually employ explicit time intearation schemes (Ref. 07, 98). Studies

which use structural elements toaether with an implicit intenration scheme

and quasi-Newton method for iteration have not been found.

In transient nonlinear analysis the dynamic properties of different

types of elements have a definite effect on the success of a particular

solution method used. Efforts to use implicit intearation schemes with a

quasi-Newton method for iteration appear to be futile. It is suaoested

that the full Newton or the BFGS method (Ref. 99) be used for the iterative

proceuure in the future.



Chapter 6

CONCLUSION

This thesis has presented an integrated study of the magnetically

induced vibrations of nonferrous conducting plates. The continuum

mechanics basis, the stream function modelling of the coupled problem,

the intermediate eddy current calculations on rigid flat plates, and

the linear vibrations of infinitely long plates have been discussed in

some detail. Some preliminary studies of the coupled nonlinear problems

of infinitely long plates have also been presented. A summary of the

work presented in this thesis is given below. Conclusions from the

present study are then drawn. Some suggestions for further research

are made at the end of the chapter.

6.1 Summary

The thesis contains three main phases: theoretical modelling of the

magnetoelastic plate, finite element eddy current calculations on rigid

plates, and finite element numerical studies of coupled magnetoelastic

problems. The numerical results obtained have been compared with analytic

and experimental results at each stage of the study. The physics and

continuum mechanics background of the problem has been presented In

Chapter Two. The magnetic force-field method has been chosen to formulate

the coupled problems. The magnetic force-energy method (Ref. 25) has not

been emphasized, although the energy transfer between the magnetic and

mechanical subsystems has been briefly mentioned in Chapter Two, and the

193
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magnetic energy-circuit method for eddy current calculation discussed in

Chapter Three.

The modelling of plate problems by the stream function method has

been presented in Section 2.3. All the simplifying assumptions have been

carefully examined and the limitations of the stream function method in

the large deformation cases analyzed. The qoverninq equations for the

magnetic and mechanical subsystems have been derived and the various

coupling effects discussed. The assumption of constant magnetic body

force across the thickness of the plate and the neglect of the magnetic

damping moment have also been discussed. Both linear and nonlinear prob-

lems have been studied. All the equations have been linearized to the

first order of the various unknown variables. The updated Laqrangian

description of the magnetic subsystem and the approximations involved in

the linearization procedure have been given special attention.

Eddy current calculations on rigid conducting plates have been pre-

sented in Chapter Three. The FE Galerkin formulations and the treatment

of the integral terms in the eddy current equations have been presented

in detail. Comparisons of the numerical results with the infrared and

search coil experimental results have been made. Analytical solutions

in the low and high magnetic Reynolds number limits have also been employ-

ed to verify the numerical results. Detailed studies including some

dimensional analysis have been carried out for the steady state and

transient eddy current problems on infinitely long plates. For finite

plates, only the steady state analysis has been formulated and performed.

Chapter Four treats the linear vibrations of infinitely long conduct-

ing plates excited by single pulsed currents. The types of coupling

studied have been limited to the effects of the transverse motions of the
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plates. The staggered transient analysis and the computational procedure

have been presented in detail. The calculated moments have been compared

to experimental values obtained with low inductance strain gage readings.

The effect of pulse duration on the induced vibrations and energy transfers

have been demonstrated through the three pulsed currents studied. The

results show that as the pulse duration decreases, the nonlocal effect

becomes more important and the magnetic force acts more like an impact

load. A quantitative description of the effect of pulse duration on the

induced vibration has not been presented because the control condition of

the driving currents does not readily permit equivalence of the input

energies in the three problems studied. A rough method has been suggested

to estimate the effect of pulse duration on the contribution of nonlocal

pushing force in the mechanical energy converted. The effect of the

difference in the time characteristics of the two subsystems on the induced

vibration may then be represented quantitatively.

The induced nonlinear vibrations of infinitely long plates have been

formulated in Chapter Five based on the linearized equations for the up-

dated incremental analysis procedure. The staggered transient analysis

and the computational scheme have been presented. An iterative procedure

has been proposed for the motion-dependent magnetic load. Some preliminary

results for the nonlinear static problems have been presented. The

convergence difficulties in the nonlinear dynamic problems have been

discussed and some suggestions made for the improvement of the iteration

scheme used.

6.2 Conclusions

The following conclusions may be drawn from the work presented:



1. The stream function method presents a useful tool for the eddy current

calculations on thin nonferrous conducting plates in the low and intermedi-

ate frequency cases. The capability of this method for curved surfaces is

limited to small curvature situations. This method has a close relation-

ship with other eddy current circuit models. The advantages and dis-

advantages of the different methods need further comparative studies.

2. From the experience of using the Fortran programs developed, the EDDYl

and EDDYlT codes appear to be reasonably efficient. The EDDY2 code takes

more computation time because of the complicated forms of the weighting

functions for the six-node triangular elements. The efficiency of the

EDDY2 code can be greatly improved by using rectangular elements and/or

linear triangular elements. The weighting functions for these elements

can be easily integrated or obtained from the weiahtina functions for the

six-node triangular elements presented in Appendix B.

3. The modelling and formulations for the linear coupled problem in

Chapter Four have been verified satisfactorily through comparisons with

low inductance strain gage experiments. The velocity and displacement

have a damping effect on the coupled problem. The total energy transferred

to the conducting plate is reduced because of these motional effects, but

their influence seems to be small for the problems studied. The pulse

duration has an effect on both the magnetic force and the induced vibra-

tions. For the short pulse an impact approximation based on the nonlocal

pushing force will be reasonable.

'. The quasi-Newton method cannot be used in the iterative procedure together

with the structural elements in the transient nonlinear problems. The

fictitious in-plane deformation caused by the simplifyinq assumptions in

the structural theory creates large in-plane inertia forces which make
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the convergence of equilibrium iteration difficult when the quasi-Newton

method is used. The simplifyina kinematic assumptions in the structural

elements have a definite influence on their performance in transient non-

linear analysis. The full Newton or a BFGS method should be used for

these problems if structural elements are to be used. The study of the

induced nonlinear vibrations of conducting plates cannot proceed until

these numerical problems are solved.

6.3 Suggestions for Further Research

The following suggestions are made for future work:

1. For the immediate continuation of the present work, it is suggested

that linear elements be implemented in the program EDDY2 to achieve

better efficiency of the computation; that the effect of pulse duration

on the energy transfer and induced vibration of infinitely lono plates be

studied in more depth; and that the full Newton and BFGS methods be tested

for the transient nonlinear problems to enable the continuation of the

study for the induced nonlinear vibrations of conducting plates.

2. The eddy current circuit nature of the stream function formulation

should be explored to enable a modal analysis of the eddy current and the

coupled problems. The magnetic energy stored in various eddy current modes

and its conversion into mechanical energies in different vibrational modes

of the plate should be calculated in such a modal theory for the coupled

problems. The modal study of the coupled problem described basically is

equivalent to the magnetic force-energy method discussed in Reference 25.

3. The in-plane force and the magnetic damping moment should be included,

and their effect on the induced vibrations and stability of the conductors

studied. Different types of magnetic fields, such as transverse or inclined
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uniform fields, should also be investigated.

4. Cyclically pulsed currents and their effect on induced vibrations

should be studied for possible manneto-flutter effects. Heat conduction

and thermoelastic coupling in such casesmay be important and may need to

be included in the analysis.

I
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APPENDIX A

MATRICES AND NONLOCAL INTEGRATIONS FOR ONE-DIMENSIONAL PLATES

This appendix presents explicit finite element matrices Including the

analytic expressions for the nonlocal integration terms described in sub-

subsection 3.3.1.b for the transient one-dimensional problems. The

matrices and expressions for the steady state problems described in sub-

subsection 3.3.1.a may be obtained from these by setting h = 1, o =R,

and by replacing X and X' by the nondimensionalized quantites x and &.

[SE] _I 1- A1
L -1 1

[pE a ou L E [1/3 1/61 (A.2)

1/6 1/3

wE *h E2l h2  E 2n 1 h2  +(.

1 2L

- k (XE ) {tan- [ (X1XE - tan 1  2 (X'-X)l
LW 2

wE h E 2 n (A.3b)

2 (n X(-X + T - in [(x"2h + - [X3'-

+ (X,-X) (E{tan-1  2 (XI-X) tan- 1  - (x,-x EM

in which the superscript E denotes the Eth element, LE the length of the

element, and XE and X2 the coordinates of the two end nodes of element E,

as shown in Figure A.l.

199



* I

*200

G E

Figure A.1 Notations used in nonlocal integrations for

one-dimensional plates.
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The nonlocal integration Eq. (3.41) is performed element-wise and

calculated over all the elements for each element E. For any element G,

the contributions to the nonlocal integration of element E are, Figure

A.1,

xG
jk " ( Nk (X') wE (X') dX', J, k-l,2 (A.4)

Ik 
I

The resulting analytical expressions of these integrations are:

QE 1 I 2hLELG +

L L

+ h I-"[ (X X) + GX) 2 + ]XG + XG

hr Ix-x) 1 1 2 2 1E 2 2 G +E

+ h I-r + - 2 ( x2- n(X X) 2 +

h7 Ty 1E2 1211 T
E+h h2  GE -2 (XG X) (XG-X 1 n , E 2 X + h 2 +

h hE - G 2 _2 E GE n G E 2h

+ !I + (X 2  2  1  2  X -) +

2~ 1E

h G - 2 21 tn G E h2
++ T (X 2-X)2  1 E in G N X n ~ 2- 1 _ I)+

+ [2 (X GX E)3 + 2 (L E+ L G) (X GX E) 2 _ 4 L E (X GX E(M G_ ) E

GE 12 GE 1

h * (X GX E)Itan& ( 2 (X GX E)+

+ ~2(XGXE)3 -2 L G (XG. X E)2 + h 2 (XGXE ta-1 2' _E +
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4 GxE 3 2XG E?2 G E h 2G E -1 2 G E+ Is (X2 - 2 2-X1) (X2-X) + 'T (X2-X2)) tan (X2-XI) +

+ 2 (XGE 3 -h 2  CXGE tan-1 2 (XGxE+ [-(2-x2)  2 2 -2

EG 1 ov EG
Q12 { - 2hL L +

1 h G E2 - G E -"E2 + E-1 +

h 2 G E 2 E G G E2 2
+- + (X-X I )- 2 L (Xl-x) + -] +

h2  G 1 G 2E2 + .2 ] ++ h +T' { X _ X E ) 2]  E( X _x1-) n [( _ 2,2+h

h2  G E 2 GE G E G h 2 2 2+ 'T ITT (X2"Xlx ) in[X122

7 [,7 2 1) - 2 1)(X2-X2 )1 ,n [(X2-X1) +T

+ I- T7" (X2'X2) 
+ 2 (X2 2j(X-X 2fltn [(X2 _X2) + +

+ [ 2 G(Xl.X E 3 + 2 LE (XG E2 + h2 (xG_E ) ] tan- l (2 (XG XE) +

2 GE3 ) GTE 1  2 F +

+ 2(X GX 2 )  ) -- (Xl-_X2E)] tan"l(2 (Xl-X 2 ) +

+ [ G E3 +2 (LELG (XGE)2 LE G E G E

(X2-X) 2 1 1 2 1)

h 2- (XGx-I tanl () (X2 -XE) +

4GF 3 -2 (X GX E2 (XGXEl + h 2 (xGxE
+~ (X 2 x2)2 2) 1 2' 1 (x 2)]*

tan- ( )( G E(X2-X2 )
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Q2 1  I{ 2hLE LG +

[(Xl'XGE - (x-X) (X-X + [(X-X2)+

21 h2

+ - 1 ] [X-X -X

h G E 2 (x+-xE2 G G E2 E2

r I 1x' 1 2 2[(x2 - x2)  +-]

+ h + 2(-G L EX2-X2) t(X x 2  + h+

Y 4 1 1 1 ,2 h2  1 E 4+ h [ITh"" (X"X E)2] 2n [( XE 2 )-X2) + h 2 ])+

S 2  G E 2 LE G E[2 E] 2

G_ G tan E 2GE +nXG

17- (X 2-x2 )  + 2 x) 1 n

2 . 2E3G E2 G E h

4 G E 3 2 (XG_ X E 2 .GXIE (X GX E]ta-1 2 G E
+ 'S (Xl Xi -1 2  (X-X )  ( 2 2) )] n ()(XlXl)+

+ f2  (X -X -2 (LEL G ) (X-X) 2  + 4 LE (XIX )  G -x

7-- (X 2-X1 tan xI

2 G_ E)3. h2 ( _xEH tn XG+ X2 1 1F 2 1
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EG oE { 2hLELG +Q22 T L LEL G

+ h [- (xE) + (xG x E 2 + (XG xE)2 (XG. XE 2 +
h 1G E 2 +2 2  2

h hX+E12 1 n [(X,17 ( i-X + "]

h h2  GxE2 -2 LE (xG_ -x G E 2 h ++ T[ TTZ _ (x 1x2) 1 2) i [(xl- x2)  + T-] +

+ h [ - _- (X G_ X1E)  + 2 (XG (X GX 1E)]  i~n f XG_'] 
+

+ 7 T-+ 22 'f2-21 z r(x2-x2) + 4-l

+ (X2-X -1 1 12- 1  +

+4(xl-x2)3 - 2 (xG-xE2( E + h- GE-x)]

2 GE3 +G E2 G+ h 2 GE -2 G

+ [. 2  (X2 -X ) + - (X2 -X) +

-1 (X2-X2 ) GE G E

+ 2 (XG_ -32 (L E LG) XGE2 + 4 L E (XGXE)( x Gx2 E

- h- (XG XE)] tan"1  2 (X G_)

2 2



APPENDIX B

MATRICES AND NONLOCAL INTEGRATIONS FOR TWO-DIMENSIONAL PLATES

This appendix presents the finite element matrices and the analytic

expressions of the nonlocal weighting functions described in subsection

3.4.1 for the steady state two-dimensional eddy current problems. The

nondimensionalized finite element equations are those presented in Eq.

(3.53).

By using the natural coordinates L1 , L2, L3 for the six-node tri-

angular element shown in Figure B.1, one may write the shape functions Ni

as:

N1  LI(2LI-l) N4 ' 4L1L2

N2 a L2(2L 2-1) N5 - 4L2L 3  (B.1)

N3 a L3(2L3-1) N6  4L3LI

in which

L I a1 b I cI  1

L 2  1 . a 2 b 2 c 2  x (B.2)

3  a3b3 c3 

ai x1 XtW yi+l - xt+ 2 yi+I

bt -yi+1 yt+ 2  t * 1,2,3 (B.3)

c xI  i 1+2 -x l
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3

5 Element E

(x, Y) 2
4

0 x,

Figure B.1 Six-node triangular element in
global coordinates.

Element E. t
i (s: t')

Figure B.2 Translated and rotated coordinates
used in nonlocal integration.

-07 .
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Am I (X2Y3  X3Y1 + X1Y2 o X2Y1 - X3Y2 - X1Y3) (B.4)

The matrices [K] and (P) in Eq.(3.53) may then be integrated to obtain

6

-1 6 symm.

[ RA
1p) " " -1 -1 6 (8.5)

0 0 -4 32

-4 0 0 16 32

0 -4 0 16 16 32

and
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1 2 L- ( l + C I  )

1 2 2
y2 (bb 2 + cc 2) - 4-(b 2 + c2

2) Symmetric

T21 2 2 2

l (blb 3  +CC 3) 12 (b2b3  + c2c3) - I (b32 + C32

[K.] -- -_ __ __l_
-2 1 3b c1c 3 12 ( 2 3 ~2 ) 30

11 2

0b b lC )  -- (blb 2  + ClC 2 )  b +

( b + ( + 0 (bb 3 + c2 c3)

-- 1(b b3 + c)c0 - -. b; 3 c~ 3

1 3 1

(blb + CC3 ) )-(lb3+ lA3
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- 4 [bl 2 + b22 + b b2

1 2 2 2

[b2 (b2+b 3) 2 [b2 2 + + b2 b
2 2 ) 12 2

+ c2 (c1+c2+c3) + C22 + C32 + c2c3 ]

+ 2 (bIb 3 + c c3)]

I (b, (b,+b 2 *b -)b [b (b +b +b 2 ( 1
2 + b32 + bb 3

+ c1 (ci+c 2+c3) + c3 (c1+c2+c3) + C1
2 + C3

2 + clc 3]

+ 2 (b2b3 + c2c3)] + 2 (bIb 2 + CLC 2 )1

(B.6)
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To integrate the weighting functions WE In Eq. (3.55), the element

is referred to a new coordinate system (s, t) obtained by the following

relationship, Figure B.2,

Lt1  -sin e Cos -s ) E (B.7)

s icn e-sin(8.8

Under this transformation,

FIx-&) 2 + (y-vi)2 + 113/2 . [(s-s') 2 + (t-tl) 2 + 3/

L* l -u-(l-c)v, 12 w u-cv, L13 0 v (B.9)

in which

u a s/a, v - t/b, c a s3/a (B.IO)

The six weighting functions W may then be written as

W-ab [ 1 u -3(1-c + 2 1 + 4(1-c) Iuv +2(1-c) 2 ]vv,

WE ab (- I + cI v + 2 1 - 4c I + 2c2 I v2 u V uu uV VV
JE

WE -ab [- Iv + 2 1v 1
3

W 4 4ab flu - c IV - Iuu + (2c-1) Iuv + c(-c)I I

uv v



- t. - - - --

r 211

W u4ab [I I - 00

in which the six basic integrations 1.1, 1uI V I , I u and I vvare:

il dA
2I 2 2 2A[a (u-u') +b (v-vl) +ii]f

=1 tan- [b 2 (-v')(u'-cvl)+cl

a a2b 2(u-Cv' )2 +a 2C2

2 2 , 2+b2  2, :2 222/7h(b (1-v')(ul-cvl)+cl (b w-c) ab b(ul-cv') +a c +b

+ tan- [b 2 V'(u'-cv')-c]

a2 b 2(u'-Cv' )2+aWc +
/b 2 c-b 2 v(u'-cvI)l 2+b2 u2 [a 2b 2(u'-cvi2+a2 c 2+b21

+ tanI {b 2(1-v')[1-u'-(1-c)v']+(1-c)i

a a2bJ l-u'-(1-c)v'12 +a2(1-c )
22 2 2 2222* b {b (1-V'hI-u-(-c)V6)+(-c)} +b (c-u') (a b [l-u'-(1-c)v'12+a (1-c) +b

+tan- (b 2  [IU-Icv](C)

a 2fl-b-( 2c v 1-u-IvZ+a(1-c) 2

_ Z(cbvtu...OC)vi12 +b2(1iu92C b _u_:a ~ v1 + 22220

(B.12)
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Iu u dA
[a (u-u' ) 2+b2  + vvs

1 K1 - 1 K (B. 13)
a2/c+b2  a 4 (c) 2 b

1*fj[a2(u-u)2+b2(v)2+1]3f2

Vol c- 1-c K 2+ 1 3 (B.14)
b2/~c +b b2/a(1_c)+b 2  2 bTK

u2

[a J a(u-u') +b (-)+1]1 2

2 2 22
Sa 2 (a c +b )/"arT~

+ -21a 2 (1-c)2+b2lu'+a 2(1-c)2 [1-u'-(1-c)v'] K2 +

+ [4- + VI I K3  + 1 -C 2 K5  (8.15)
a b a a? Y a(a _1c)24b

*u uv 2dA 2
UV~ (a (u-u') +b (V-V )+1] 3'
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U v+ a2 cu , +b 2 v K a 2 (1-C)(1-u')+b 2v. 2
(a c 1b a[a2(1-c)2+b21 /a(-c)2 b7

+2K- 1 2K 5  (.6
a 2(a 2c2+b ) 4a 2 [a 2(1-0)2 +b

I~~y [ 1A a(u-uI) +b (v-v') +113 '

*(v,2 _ I~ + b lu c)-2(a c +b )CL K +
b ~ b(a c +b )/l K1

+ b 2 1-u-(1-c)v']-2(a 2 (1-c)2+b 2 ](-c)v' K

[~a (1-c)2+b23.a (1-c)2+b2

+ 2v' K C K -- K (B.17)
aby b 2(a 2c-2+0 4 b 2(a 2(-C)2 +b 2,

in which

IK~~I 1 5n l 2c2+b2)[a 2(u'_C)2+b2 (Vl-l) 24H - a 2c(u'-c)-b 2(LV'

/22 2 2 2 2 2

/( I- Of (1u- ab2-TJ 8(1-c)(1-u')-b v'

LAa(-)b 2 t 2 1u) 2 bv 2 1
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K3 =n /a2(u'-])2"+b2v12+1 - a(u.-1) (B.20)

- au'

K4  / 2 (u -c) +b2 (v'-1)2 +1 - / l (B.21)

K - ! (l-u')2+b2v'2,l - a2(C-ue)2 +b (v'-)2+1 (B.22)

The nonlocal matrix (Q] is calculated numerically by using these six

analytic expressions of the weighting function WE within each element.

Pure numerical integrations are used to evaluate the nonlocal integrations

for (u',v') outside the element.

*1I
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APPENDIX C

MATRICES AND VECTORS FOR NONLINEAR DYNAMIC ANALYSIS

This appendix summarizes the matrices and vectors for the finite

element UL transient nonlinear analysis described in Section 5.1. Details

of the derivations are given by Bathe and Bolourchi (Ref. 87).

The interpolation functions for the components of displacement

increment in Eq. (5.1) are

u _r s r s

= ul (C.l)

u2 0 4 L'5  0 *6 -r*l

in which

{u} u I u 2 u3 u4 u5 u6j (C.2)

r (Z)2 2 r (r 2
pI L L 1 - 4 U +  3 -C)

2 2 3

2 3 2 3
3() + , -3(i) -2r(-) (C.3)

5 (r)2(r)3 
(r 2 (.r 3

and in which L is the length of the beam element, r, s are the beam convect-

ed coordinates, Figure C.l. The shear deformation is not included in this

approximation.

The linear strain-displacement transformation matrix [tB relates

the linear part of the strain components to the nodal degrees of freedom
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U2  U5

U r u4

U3

Figure CA Convected coordinates and degrees of
freedom of beam element.

OSZ

tt

L

t 01

I 2

Figure C.2 Current and original local coordinates
of beam element.
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t B u I(C.4)
) 2e12 1

and is

1 si sI s s rs6- -11 - 4f-6 6-+l- 2 -E6 27
IBL L L L L fuILC5EtBL] { u) (C.5)

0 0 0 0 0 0

The linear stiffness matrix [t KL] is calculated from Eq. (5.3) using

tB1] given above and is the same as the usual linear beam stiffness matrix:

A
'I

0 121 Symm.

E 0 61 41 (C.6)

A A
A~ 0 0 A

0 121 61 0 121

0 61 21 0 61 41
SLF

The matrix of Cauchy stresses [tr] in Eq. (5.4) in this case is

T 11 0 0

t 0 Til 0 (C.7)

0 0 0

AW
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The nonlinear strain-displacement transformation matrix t BNL) is

ItBNLI (bij3x6

is 4rs s rsl2! 2 S6!s

L L L L L L

The nonlinear stiffness matrix [tKNL] in Eq. (5.4) is obtained using [tBNL]

given above and is sh2n in Eq. (C.9). The N.ton-Cotes quadrature formula

is used to integrate (tK LI numfaly

NI 2c y

LLL
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The vector of Cauchy stresses (tTifin Eq. (5.5) is

I = L1 Tn T (C.1O)

in which T12 has been set to zero. The Newton-Cotes formula is also used

to Integrate the vector of nodal point forces (t F) given below.

TII(- U)I

l1( -127)

{tF) f v 4t-&7 dV (C.11)

L
11(1)

L L

The element stiffness equations must be transformed to global coordinates

. before they are assembled into a set of global equations. The transformation

matrix from local to global coordinates is

[tR] t] [OR (C•12)

r In which [OR3 is the transformation matrix from the original local coordinates

i', of the element to the global coordinates, and [(tRI is the transformation

~matrix from the current to the original local coordinates of the beam

: element. [tR] is given by

[tR]-2 -F o &.7-l-

L L

(RI R] 0i R (C.12)

0
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in which

t
cos B sintB 0

t] 3 1snts costs 0 (C.14)

0 01

with

t V tslnt t 2 V 2112

L - [O L +ot ) + (ou2/ (C.15)

as shown in Figure C.2.

The element matrices and vectors in global coordinates are

ItRjT[tK][tR],[tR]T(tF}, and [tR]T{u, respectively, in which

ItK] = [tKL] + [tKNL).

The element stress increments are calculated by using the following

strain increment

' '6u 1 tt-atL

e E u + L (tL- ) (C.16)
j=-2 L li 01o
J#'4

The total element stresses are updated by using

* t+At t
r ll + E ell (C.17)

*1
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